计算机应用 ›› 2018, Vol. 38 ›› Issue (10): 3030-3035.DOI: 10.11772/j.issn.1001-9081.2018030695

• 应用前沿、交叉与综合 • 上一篇    下一篇

基于改进人工鱼群算法的车辆轨迹规划方法

袁娜, 史昕, 赵祥模   

  1. 长安大学 信息工程学院, 西安 710064
  • 收稿日期:2018-04-04 修回日期:2018-05-12 出版日期:2018-10-10 发布日期:2018-10-13
  • 通讯作者: 袁娜
  • 作者简介:袁娜(1993-),女,山西大同人,硕士研究生,主要研究方向:大数据、智能化交通;史昕(1987-),男,河南南阳人,讲师,博士,CCF会员,主要研究方向:无线传感网络时间同步与数据融合、车联网仿真与测试;赵祥模(1966-),男,重庆人,教授,博士生导师,博士,主要研究方向:分布式计算机网络测控、智能交通系统、智能测控、车联网。
  • 基金资助:
    国家重点研发计划项目(2017YFC0804806);高等学校学科创新引智计划项目(B14043);中央高校基本科研业务费专项资金资助项目(300102248204)。

Vehicular trajectory planning method based on improved artificial fish swarm algorithm

YUAN Na, SHI Xin, ZHAO Xiangmo   

  1. School of Information Engineering, Chang'an University, Xi'an Shaanxi 710064, China
  • Received:2018-04-04 Revised:2018-05-12 Online:2018-10-10 Published:2018-10-13
  • Supported by:
    This work is partially supported by the National Key R&D Program of China (2017YFC0804806), the Programm of Introducing Talents of Discipline to Universities (B1403), the Fundamental Research Fund for the Central Universities (300102248204).

摘要: 针对车联网环境下若干典型车辆轨迹规划方法存在车速与轨迹波动性较大的问题,提出一种基于改进人工鱼群算法的车辆轨迹规划方法。该方法以短程通信(DSRC)的车联网应用场景为设计平台,以车辆的最优行车速度为核心计算基础,分析得到了车辆的最佳轨迹。首先,对人工鱼群算法在车联网应用场景的优势和不足进行分析,引入万有引力力学模型与避障模式控制,提出一种改进的人工鱼群算法;然后,分析车辆在车联网应用场景中的受力约束,利用网联车辆的自组织行为控制策略推导最优行车速度;最后,基于最优行车速度实现对车辆的实时轨迹诱导和轨迹避障控制规划。仿真测试结果表明,在运用了基于改进人工鱼群算法的轨迹规划模型后,车辆的驾驶速度更加平稳,轨迹波动性较小,对障碍物可实现零失误避撞;在多车相遇情况下,测试车辆为2~40时,相对于原人工鱼群算法和萤火虫算法,运用改进人工鱼群算法后车速的平均迭代次数减少,迭代效率提高3~7、4~8倍,且随着车辆数目越多,迭代效率提升越明显。

关键词: 人工鱼群算法, 车联网, 轨迹规划, 安全驾驶, 速度诱导

Abstract: Concerning large fluctuation in velocity and trajectory of typical vehicle trajectory planning methods in the Internet of Vehicles (IoV) environment, a new vehicle trajectory planning method based on improved artificial fish swarm algorithm was proposed. Using Delicated Short Range Communications (DSRC) application scenario as a design platform, taking the optimal speed as the core calculation basis, the optimal trajectory of the vehicle was analyzed and achieved. Firstly, the advantages and disadvantages of artificial fish swarm algorithm in the application scene of IoV were analyzd, and an improved artificial fish swarm algorithm was proposed by introducing universal gravitational model and obstacle avoidance mode control. Secondly, the force constraints of the vehicle in the IoV application scenario were analyzd, and the self-organizing behavior control strategy of networked vehicle was used to derive the optimal speed. Finally, real-time trajectory guidance and trajectory obstacle avoidance control planning for the vehicles was realized based on the optimal speed. The simulation results show that after using the trajectory planning model, the driving speed of the vehicle is more stable, the trajectory is less fluctuating, and zero collision can be achieved. In the case of multi-vehicle encounters, when the number of test vehicles is between 2 and 40, compared to the original artificial fish swarm algorithm and firefly algorithm, the iteration number of vehicular trajectory planning method using the improved artificial fish swarm algorithm was reduced,and iteration efficiency increased by 3 to 7 times and 4 to 8 times. The more vehicles, the more obvious the improvement of iteration efficiency.

Key words: artificial fish algorithm, Internet of vehicles, trajectory planning, safe driving, induced velocity

中图分类号: