计算机应用

• 数据挖掘 • 上一篇    下一篇

基于Web页面平均质量的Web搜索模型和优化算法

付国瑜 黄贤英   

  1. 重庆工学院
  • 收稿日期:2008-10-27 修回日期:2008-12-07 发布日期:2009-04-01 出版日期:2009-04-01
  • 通讯作者: 付国瑜

Web search model and optimal algorithm based on mean quantity of Web pages

Guo-yu FU Xian-ying HUANG   

  • Received:2008-10-27 Revised:2008-12-07 Online:2009-04-01 Published:2009-04-01
  • Contact: Guo-yu FU

摘要: 针对Web搜索引擎的特点,提出了一种基于量子遗传克隆挖掘(QGCMA)的搜索策略。该算法将用户的查询描述为Web页面的平均质量,并通过克隆,变异,交叉的操作获取具有高亲和度的抗体(Web页面)。通过实验结果分析得出,在Web搜索中该方法比标准的遗传算法(GA)具有较明显的优势。

关键词: 搜索引擎, Web搜索, 遗传算法, 克隆选择算法, 量子计算

Abstract: This paper proposed a search strategy based on Quantum Genetic Clonal Mining Algorithm (QGCMA) for Web search. The user query was used to mathematically define a mean quantity of Web pages, and evolved a population of Web pages for maximizing the affinity by clonal, mutation and crossover operator. The analysis and experimental results show that the proposed method is superior to standard genetic algorithm in Web search.

Key words: search engine, Web search, Genetic Algorithm (GA), Clonal Selection Algorithm (CSA), Quantum Computing (QC)

中图分类号: