[1] 宋敬环. 聚类集成算法研究[D]. 哈尔滨:哈尔滨工程大学, 2015:1. (SONG J H. Research on clustering ensemble method[D]. Harbin:Harbin Engineering University, 2015:1). [2] STREHL A, GHOSH J. Cluster ensembles:a knowledge reuse framework for combining partitionings[J]. Journal of Machine Learning Research, 2003, 3(3):583-617. [3] YU Z, LI L, LIU J, et al. Adaptive noise immune cluster ensemble using affinity propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,27(12):3176-3189. [4] HUANG D, LAI J, WANG C. Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis[J]. Neurocomputing, 2015, 170:240-250. [5] YANG Y. Elements of information theory[J]. Journal of the American Statistical Association, 2008, 103(3):429-429. [6] IAM-ON N, BOONGOEN T, GARRETT S, et al. A link-based approach to the cluster ensemble problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2396-2409. [7] WANG T. CA-Tree:a hierarchical structure for efficient and scalable coassociation-based cluster ensembles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2011, 41(3):686-698. [8] TUMER K, AGOGINO A K. Ensemble clustering with voting active clusters[J]. Pattern Recognition Letters, 2008, 29(14):1947-1953. [9] 董彩云, 杜韬, 郭春燕,等. 聚类后的关联规则快速更新算法研究[J]. 计算机应用研究, 2004, 21(11):30-32.(DONG C Y, DU T, GUO C Y, et al. Research on fast adapting algorithm of association rules after clustering[J]. Application Research of Computers, 2004, 21(11):30-32.) [10] TOPCHY A, JAIN A K, PUNCH W. Clustering ensembles:models of consensus and weak partitions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12):1866-1881. [11] STREHL A, GHOSH J. Cluster ensembles:a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3:583-617. [12] FRED A L, JAIN A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6):835-850. [13] FERN X Z, BRODLEY C E. Random projection for high dimensional data clustering:a cluster ensemble approach[C]//Proceedings of the 20th International Conference on Machine Learning. Palo Alto:AAAI Press, 2003:187-192. [14] KUNCHEVA L I, VETRO D P. Evaluation of stability of k-means cluster ensembles with respect to random initialization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11):1798-1808. [15] MINAEIBIDGOLI B, TOPCHY A, PUNCH W F. Ensembles of partitions via data resampling[C]//Proceedings of the 2004 International Conference on Information Technology:Coding and Computing. Washington, DC:IEEE Computer Society, 2004:188-192. [16] DUDOIT S, FRIDLYAND J. Bagging to improve the accuracy of a clustering procedure[J]. Bioinformatics, 2003, 19(9):1090-1099. [17] YANG Y, JIANG J. Hybrid sampling-based clustering ensemble with global and local constitutions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 27(5):952-965. [18] ZHOU P, DU L, WANG H, et al. Learning a robust consensus matrix for clustering ensemble via Kullback-Leibler divergence minimization[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2015:4112-4118. [19] YU Z, LUO P, YOU J, et al. Incremental semi-supervised clustering ensemble for high dimensional data clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3):701-714. [20] YAO Y. An outline of a theory of three-way decisions[C]//Proceedings of the 8th International Conference on Rough Sets and Current Trends in Computing. Heidelberg:Springer, 2012:1-17. [21] WANG L, MIAO D, ZHAO C. Chinese emotion recognition based on three-way decisions[C]//Proceedings of the 10th International Conference on Rough Sets and Knowledge Technology. Heidelberg:Springer, 2015:299-308. [22] XU J, MIAO D, ZHANG Y, et al. A three-way decisions model with probabilistic rough sets for stream computing[J]. International Journal of Approximate Reasoning, 2017, 88:1-22. [23] LI W, XU W H. Double-quantitative decisiontheoretic rough set[J]. Information Sciences, 2015, 316:54-67. [24] QIAN Y, ZHANG H, SANG Y, et al. Multi-granulation decisiontheoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(1):225-237. [25] 苗夺谦, 徐菲菲, 姚一豫,等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2):351-363.(MIAO D Q, XU F F, YAO Y Y, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2):351-363.) [26] ABUALIGAH L M, KHADER A T, AL-BETAR M A, et al. Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering[J]. Expert Systems with Applications, 2017, 84(C):24-36. [27] HUANG D, WANG C, LAI J. Locally weighted ensemble clustering[J]. IEEE Transactions on Cybernetics, 2016, 48(5):1460-1473. |