[1] FU Z,FENG P,ANGELINI,F,et al. Particle PHD filter based multiple human tracking using online group-structured dictionary learning[J]. IEEE Access,2018,6:14764-14778. [2] 闫若怡, 熊丹, 于清华, 等. 基于并行跟踪检测框架与深度学习的目标跟踪算法[J]. 计算机应用, 2019, 39(2):343-347.(YAN R Y,XIONG D,YU Q H,et,al. Object tracking algorithm based on parallel tracking and detection framework and deep learning[J]. Journal of Computer Applications,2019,39(2):343-347.) [3] YAN J,PU W,ZHOU S,et,al. Collaborative detection and power allocation framework for target tracking in multiple radar system[J]. Information Fusion,2020,55:173-183. [4] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178. [5] ZHANG Y,JI H. A novel fast partitioning algorithm for extended target tracking using a Gaussian mixture PHD filter[J]. Signal Processing,2013,93(11):2975-2985. [6] MAHLER R P S. PHD filters for nonstandard targets,I:extended targets[C]//Proceedings of the 12th International Conference on Information Fusion. Piscataway:IEEE,2009:915-921. [7] LI Y,XIAO H,SONG Z,et al. A new multiple extended target tracking algorithm using PHD filter[J]. Signal Processing,2013, 93(12):3578-3588. [8] GRANSTRÖM K,LUNDQUIST C,ORGUNER U. Extended target tracking using a Gaussian-mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2012,48(4):3268-3286. [9] ZHANG Y,JI H,HU Q. A box-particle implementation of standard PHD filter for extended target tracking[J]. Information Fusion, 2017,34:55-69. [10] ZHANG Y,JI H,HU Q. A fast ellipse extended target PHD filter using box-particle implementation[J]. Mechanical Systems and Signal Processing,2018,99:57-72. [11] LI X R,BAR-SHALOM Y. A recursive multiple model approach to noise identification[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):671-684. [12] STORVIK G. Particle filters for state space models with the presence of unknown static parameters[J]. IEEE Transactions on Signal Processing,2002,50(2):281-289. [13] SÄRKKÄ S,NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control,2009,54(3):596-600. [14] WU X,HUANG G,GAO J. Adaptive noise variance identification for probability hypothesis density-based multi-target filter by variational Bayesian approximations[J]. IET Radar,Sonar and Navigation,2013,7(8):895-903. [15] YANG J,GE H. Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking[J]. IET Radar,Sonar and Navigation,2013,7(9):959-967. [16] WU X, HUANG G, GAO J. Particle filters for probability hypothesis density filter with the presence of unknown measurement noise covariance[J]. Chinese Journal of Aeronautics,2013,26(6):1517-1523. [17] YANG J,GE H. An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation[J]. Signal Processing,2013,93(9):2510-2515. [18] SCHUHMACHER D,VO B T,VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing,2008,56(8):3447-3457. |