《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (10): 3200-3208.DOI: 10.11772/j.issn.1001-9081.2021081510
所属专题: 多媒体计算与计算机仿真
李大伟1,2, 曾智勇1,2
收稿日期:
2021-08-24
修回日期:
2021-12-06
接受日期:
2021-12-06
发布日期:
2022-01-07
出版日期:
2022-10-10
通讯作者:
曾智勇
作者简介:
第一联系人:李大伟(1997—),男,安徽六安人,硕士研究生,主要研究方向:行人重识别Dawei LI1,2, Zhiyong ZENG1,2
Received:
2021-08-24
Revised:
2021-12-06
Accepted:
2021-12-06
Online:
2022-01-07
Published:
2022-10-10
Contact:
Zhiyong ZENG
About author:
LI Dawei, born in 1997, M. S. candidate. His research interests include person re-identification.摘要:
针对跨模态行人重识别图像间模态差异大的问题,大多数现有方法采用像素对齐、特征对齐来实现图像间的匹配。为进一步提高两种模态图像间的匹配的精度,设计了一个基于动态双注意力机制的多输入双流网络模型。首先,在每个批次的训练中通过增加同一行人在不同相机下的图片,让神经网络在有限的样本中学习到充分的特征信息;其次,利用齐次增强得到灰度图像作为中间桥梁,在保留了可见光图像结构信息的同时消除了颜色信息,而灰度图像的运用弱化了网络对颜色信息的依赖,从而加强了网络模型挖掘结构信息的能力;最后,提出了适用于3个模态间图像的加权六向三元组排序(WSDR)损失,所提损失充分利用了不同视角下的跨模态三元组关系,优化了多个模态特征间的相对距离,并提高了对模态变化的鲁棒性。实验结果表明,在SYSU-MM01数据集上,与动态双注意聚合(DDAG)学习模型相比,所提模型在评价指标Rank-1和平均精确率均值(mAP)上分别提升了4.66和3.41个百分点。
中图分类号:
李大伟, 曾智勇. 基于动态双注意力机制的跨模态行人重识别模型[J]. 计算机应用, 2022, 42(10): 3200-3208.
Dawei LI, Zhiyong ZENG. Cross-modal person re-identification model based on dynamic dual-attention mechanism[J]. Journal of Computer Applications, 2022, 42(10): 3200-3208.
模式 | 全局搜索 | 室内搜索 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
r=1 | r=5 | r=10 | r=20 | mAP | r=1 | r=5 | r=10 | r=20 | mAP | |
B | 0.547 5 | 0.823 1 | 0.903 9 | 0.958 1 | 0.530 2 | 0.610 2 | 0.871 3 | 0.940 6 | 0.984 1 | 0.679 8 |
B+H0 | 0.568 1 | 0.825 7 | 0.912 4 | 0.964 1 | 0.534 2 | 0.629 1 | 0.881 0 | 0.935 6 | 0.979 1 | 0.689 9 |
B+DHHI | 0.572 4 | 0.829 3 | 0.915 7 | 0.966 4 | 0.542 5 | 0.636 2 | 0.888 5 | 0.941 2 | 0.982 1 | 0.691 3 |
B+DHHI+SDR | 0.593 7 | 0.852 3 | 0.929 8 | 0.972 4 | 0.563 1 | 0.650 7 | 0.899 5 | 0.956 7 | 0.986 5 | 0.715 5 |
B+DHHI+WSDR | 0.594 1 | 0.854 9 | 0.934 5 | 0.975 8 | 0.564 3 | 0.652 5 | 0.901 1 | 0.959 5 | 0.989 7 | 0.718 9 |
表1 在SYSU-MM01数据集上所提出的每个组件的评估
Tab. 1 Evaluation of each proposed component on SYSU-MM01 dataset
模式 | 全局搜索 | 室内搜索 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
r=1 | r=5 | r=10 | r=20 | mAP | r=1 | r=5 | r=10 | r=20 | mAP | |
B | 0.547 5 | 0.823 1 | 0.903 9 | 0.958 1 | 0.530 2 | 0.610 2 | 0.871 3 | 0.940 6 | 0.984 1 | 0.679 8 |
B+H0 | 0.568 1 | 0.825 7 | 0.912 4 | 0.964 1 | 0.534 2 | 0.629 1 | 0.881 0 | 0.935 6 | 0.979 1 | 0.689 9 |
B+DHHI | 0.572 4 | 0.829 3 | 0.915 7 | 0.966 4 | 0.542 5 | 0.636 2 | 0.888 5 | 0.941 2 | 0.982 1 | 0.691 3 |
B+DHHI+SDR | 0.593 7 | 0.852 3 | 0.929 8 | 0.972 4 | 0.563 1 | 0.650 7 | 0.899 5 | 0.956 7 | 0.986 5 | 0.715 5 |
B+DHHI+WSDR | 0.594 1 | 0.854 9 | 0.934 5 | 0.975 8 | 0.564 3 | 0.652 5 | 0.901 1 | 0.959 5 | 0.989 7 | 0.718 9 |
损失策略 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|
r=1 | mAP | r=1 | mAP | |
Triplet(Hard)[ | 0.539 1 | 0.517 6 | 0.585 7 | 0.658 9 |
WTDR [ | 0.564 2 | 0.533 2 | 0.625 4 | 0.687 2 |
WSDR | 0.582 3 | 0.550 8 | 0.641 0 | 0.703 9 |
表2 不同三元组损失变体下的Rank-1和mAP
Tab. 2 Rank-1 and mAP under different triplet loss variants
损失策略 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|
r=1 | mAP | r=1 | mAP | |
Triplet(Hard)[ | 0.539 1 | 0.517 6 | 0.585 7 | 0.658 9 |
WTDR [ | 0.564 2 | 0.533 2 | 0.625 4 | 0.687 2 |
WSDR | 0.582 3 | 0.550 8 | 0.641 0 | 0.703 9 |
策略 | 全局搜索 | 室内搜索 | |||
---|---|---|---|---|---|
r=1 | mAP | r=1 | mAP | ||
Base | 0.573 3 | 0.542 6 | 0.634 1 | 0.685 0 | |
Base+IWPA | 0.583 9 | 0.550 4 | 0.641 2 | 0.693 4 | |
Base+CGSA | 0.573 5 | 0.548 0 | 0.635 0 | 0.690 3 | |
Base+IWPA+CGSA | 0.594 1 | 0.564 3 | 0.652 5 | 0.718 9 |
表3 IWPA、CGSA模块的有效性验证
Tab. 3 Validity verification of IWPA module and CGSA module
策略 | 全局搜索 | 室内搜索 | |||
---|---|---|---|---|---|
r=1 | mAP | r=1 | mAP | ||
Base | 0.573 3 | 0.542 6 | 0.634 1 | 0.685 0 | |
Base+IWPA | 0.583 9 | 0.550 4 | 0.641 2 | 0.693 4 | |
Base+CGSA | 0.573 5 | 0.548 0 | 0.635 0 | 0.690 3 | |
Base+IWPA+CGSA | 0.594 1 | 0.564 3 | 0.652 5 | 0.718 9 |
模型 | 训练一个Epoch所用的时间/s | 参数量/106 |
---|---|---|
DDAG | 299.821 | 362.48 |
BADIN | 736.375 | 363.53 |
表4 不同模型的计算开销
Tab. 4 Computational overhead of different models
模型 | 训练一个Epoch所用的时间/s | 参数量/106 |
---|---|---|
DDAG | 299.821 | 362.48 |
BADIN | 736.375 | 363.53 |
方法 | 全局搜索 | 室内搜索 | ||||||
---|---|---|---|---|---|---|---|---|
r=1 | r=10 | r=20 | mAP | r=1 | r=10 | r=20 | mAP | |
HOG[ | 0.027 6 | 0.183 0 | 0.319 0 | 0.424 0 | 0.032 2 | 0.247 0 | 0.445 0 | 0.072 5 |
LOMO[ | 0.036 4 | 0.232 0 | 0.373 0 | 0.045 3 | 0.057 5 | 0.344 0 | 0.549 0 | 0.102 0 |
Zero-Padding[ | 0.148 0 | 0.541 0 | 0.713 0 | 0.159 0 | 0.206 0 | 0.684 0 | 0.858 0 | 0.269 0 |
eBDTR[ | 0.278 2 | 0.673 4 | 0.813 4 | 0.284 2 | 0.324 6 | 0.774 2 | 0.896 2 | 0.424 6 |
HSME[ | 0.206 8 | 0.327 4 | 0.779 5 | 0.231 2 | ― | ― | ― | ― |
D2RL[ | 0.289 0 | 0.706 0 | 0.824 0 | 0.292 0 | ― | ― | ― | ― |
MAC[ | 0.332 6 | 0.790 4 | 0.900 9 | 0.362 2 | 0.364 3 | 0.623 6 | 0.716 3 | 0.370 3 |
MSR[ | 0.373 5 | 0.834 0 | 0.933 4 | 0.381 1 | 0.396 4 | 0.892 9 | 0.976 6 | 0.508 8 |
AlignGAN[ | 0.424 0 | 0.850 0 | 0.937 0 | 0.407 0 | 0.459 0 | 0.876 0 | 0.944 0 | 0.543 0 |
AGW[ | 0.475 0 | 0.843 9 | 0.921 4 | 0.476 5 | 0.541 7 | 0.911 4 | 0.959 8 | 0.629 7 |
DDAG[ | 0.547 5 | 0.903 9 | 0.958 1 | 0.530 2 | 0.610 2 | 0.940 6 | 0.984 1 | 0.679 8 |
BADIN | 0.594 1 | 0.934 5 | 0.975 8 | 0.564 3 | 0.652 5 | 0.959 5 | 0.989 7 | 0.718 9 |
表5 在SYSU-MM01数据集上本文方法与先进水平方法的性能比较
Tab. 5 Performance comparison of the proposed method and advanced methods on SYSU-MM01 dataset
方法 | 全局搜索 | 室内搜索 | ||||||
---|---|---|---|---|---|---|---|---|
r=1 | r=10 | r=20 | mAP | r=1 | r=10 | r=20 | mAP | |
HOG[ | 0.027 6 | 0.183 0 | 0.319 0 | 0.424 0 | 0.032 2 | 0.247 0 | 0.445 0 | 0.072 5 |
LOMO[ | 0.036 4 | 0.232 0 | 0.373 0 | 0.045 3 | 0.057 5 | 0.344 0 | 0.549 0 | 0.102 0 |
Zero-Padding[ | 0.148 0 | 0.541 0 | 0.713 0 | 0.159 0 | 0.206 0 | 0.684 0 | 0.858 0 | 0.269 0 |
eBDTR[ | 0.278 2 | 0.673 4 | 0.813 4 | 0.284 2 | 0.324 6 | 0.774 2 | 0.896 2 | 0.424 6 |
HSME[ | 0.206 8 | 0.327 4 | 0.779 5 | 0.231 2 | ― | ― | ― | ― |
D2RL[ | 0.289 0 | 0.706 0 | 0.824 0 | 0.292 0 | ― | ― | ― | ― |
MAC[ | 0.332 6 | 0.790 4 | 0.900 9 | 0.362 2 | 0.364 3 | 0.623 6 | 0.716 3 | 0.370 3 |
MSR[ | 0.373 5 | 0.834 0 | 0.933 4 | 0.381 1 | 0.396 4 | 0.892 9 | 0.976 6 | 0.508 8 |
AlignGAN[ | 0.424 0 | 0.850 0 | 0.937 0 | 0.407 0 | 0.459 0 | 0.876 0 | 0.944 0 | 0.543 0 |
AGW[ | 0.475 0 | 0.843 9 | 0.921 4 | 0.476 5 | 0.541 7 | 0.911 4 | 0.959 8 | 0.629 7 |
DDAG[ | 0.547 5 | 0.903 9 | 0.958 1 | 0.530 2 | 0.610 2 | 0.940 6 | 0.984 1 | 0.679 8 |
BADIN | 0.594 1 | 0.934 5 | 0.975 8 | 0.564 3 | 0.652 5 | 0.959 5 | 0.989 7 | 0.718 9 |
方法 | 可见光到红外 | 红外到可见光 | ||||||
---|---|---|---|---|---|---|---|---|
r=1 | r=10 | r=20 | mAP | r=1 | r=10 | r=20 | mAP | |
Zero-Padding[ | 0.177 5 | 0.342 1 | 0.443 5 | 0.189 0 | 0.166 3 | 0.346 8 | 0.442 5 | 0.178 2 |
eBDTR[ | 0.346 2 | 0.589 6 | 0.687 2 | 0.334 6 | 0.342 1 | 0.587 4 | 0.686 4 | 0.178 2 |
HSME[ | 0.508 5 | 0.733 6 | 0.816 6 | 0.470 0 | 0.501 5 | 0.724 0 | 0.810 7 | 0.324 9 |
D2RL[ | 0.434 0 | 0.661 0 | 0.763 0 | 0.441 0 | ― | ― | ― | 0.461 6 |
MAC[ | 0.364 3 | 0.623 6 | 0.716 3 | 0.370 3 | 0.362 0 | 0.616 8 | 0.709 9 | 0.366 3 |
MSR[ | 0.484 3 | 0.703 2 | 0.799 5 | 0.486 7 | ― | ― | ― | ― |
AlignGAN[ | 0.579 0 | ― | ― | 0.536 0 | 0.563 0 | ― | ― | 0.534 0 |
DDAG[ | 0.693 4 | 0.861 9 | 0.914 9 | 0.634 6 | 0.680 6 | 0.851 5 | 0.903 1 | 0.618 0 |
BADIN | 0.705 3 | 0.875 7 | 0.927 9 | 0.667 6 | 0.692 7 | 0.864 3 | 0.912 2 | 0.653 7 |
表6 在RegDB数据集上本文方法与先进方法的性能比较
Tab. 6 Performance comparison of the proposed method and advanced methods on RegDB dataset
方法 | 可见光到红外 | 红外到可见光 | ||||||
---|---|---|---|---|---|---|---|---|
r=1 | r=10 | r=20 | mAP | r=1 | r=10 | r=20 | mAP | |
Zero-Padding[ | 0.177 5 | 0.342 1 | 0.443 5 | 0.189 0 | 0.166 3 | 0.346 8 | 0.442 5 | 0.178 2 |
eBDTR[ | 0.346 2 | 0.589 6 | 0.687 2 | 0.334 6 | 0.342 1 | 0.587 4 | 0.686 4 | 0.178 2 |
HSME[ | 0.508 5 | 0.733 6 | 0.816 6 | 0.470 0 | 0.501 5 | 0.724 0 | 0.810 7 | 0.324 9 |
D2RL[ | 0.434 0 | 0.661 0 | 0.763 0 | 0.441 0 | ― | ― | ― | 0.461 6 |
MAC[ | 0.364 3 | 0.623 6 | 0.716 3 | 0.370 3 | 0.362 0 | 0.616 8 | 0.709 9 | 0.366 3 |
MSR[ | 0.484 3 | 0.703 2 | 0.799 5 | 0.486 7 | ― | ― | ― | ― |
AlignGAN[ | 0.579 0 | ― | ― | 0.536 0 | 0.563 0 | ― | ― | 0.534 0 |
DDAG[ | 0.693 4 | 0.861 9 | 0.914 9 | 0.634 6 | 0.680 6 | 0.851 5 | 0.903 1 | 0.618 0 |
BADIN | 0.705 3 | 0.875 7 | 0.927 9 | 0.667 6 | 0.692 7 | 0.864 3 | 0.912 2 | 0.653 7 |
1 | 宋婉茹,赵晴晴,陈昌红,等. 行人重识别研究综述[J]. 智能系统学报, 2017, 12(6):770-780. 10.11992/tis.201706084 |
SONG W R, ZHAO Q Q, CHEN C H, et al. Survey on pedestrian re-identification research[J]. CAAI Transactions on Intelligent Systems, 2017, 12(6):770-780. 10.11992/tis.201706084 | |
2 | YE M, SHEN J B, SHAO L. Visible-infrared person re-identification via homogeneous augmented tri-modal learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 728-739. 10.1109/tifs.2020.3001665 |
3 | DAI P, JI R, WANG H, et al. Cross-modality person re-identification with generative adversarial training[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 677-683. 10.24963/ijcai.2018/94 |
4 | WANG G A, ZHANG T Z, CHENG J, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3622-3631. 10.1109/iccv.2019.00372 |
5 | YE M, SHEN J B, CRANDALL D J, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12362. Cham: Springer, 2020: 229-247. |
6 | YI D, LEI Z, LIAO S C, et al. Deep metric learning for person re-identification[C]// Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway: IEEE, 2014: 34-39. 10.1109/icpr.2014.16 |
7 | JÜNGLING K, BODENSTEINER C, ARENS M. Person re-identification in multi-camera networks[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2011: 55-61. 10.1109/cvprw.2011.5981771 |
8 | ZHENG L, BIE Z, SUN Y F, et al. MARS: a video benchmark for large-scale person re-identification[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9910. Cham: Springer, 2016: 868-884. |
9 | FELZENSZWALB P, McALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]// Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8. 10.1109/cvpr.2008.4587597 |
10 | ZHENG W S, GONG S G, XIANG T. Reidentification by relative distance comparison[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 653-668. 10.1109/tpami.2012.138 |
11 | WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of Machine Learning Research, 2009, 10:207-244. |
12 | LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2197-2206. 10.1109/cvpr.2015.7298832 |
13 | ZHENG W S, GONG S G, XIANG T. Person re-identification by probabilistic relative distance comparison[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 649-656. 10.1109/cvpr.2011.5995598 |
14 | PEDAGADI S, ORWELL J, VELASTIN S, et al. Local Fisher discriminant analysis for pedestrian re-identification[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3318-3325. 10.1109/cvpr.2013.426 |
15 | WANG J Y, ZHU X T, GONG S G, et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2275-2284. 10.1109/cvpr.2018.00242 |
16 | ZHANG X, LUO H, FAN X, et al. AlignedReID: surpassing human-level performance in person re-identification[EB/OL]. (2018-01-31) [2021-10-10].. |
17 | SUN Y F, XU Q, LI Y L, et al. Perceive where to focus: learning visibility-aware part-level features for partial person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 393-402. 10.1109/cvpr.2019.00048 |
18 | SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 501-518. |
19 | ZHENG F, DENG C, SUN X, et al. Pyramidal person re-identification via multi-loss dynamic training[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8506-8514. 10.1109/cvpr.2019.00871 |
20 | WANG Z X, WANG Z, ZHENG Y Q, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 618-626. 10.1109/cvpr.2019.00071 |
21 | YE M, LAN X Y, LI J W, et al. Hierarchical discriminative learning for visible thermal person re-identification[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 7501-7508. 10.1609/aaai.v32i1.12293 |
22 | LI S, XIAO T, LI H S, et al. Identity-aware textual-visual matching with latent co-attention[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1908-1917. 10.1109/iccv.2017.209 |
23 | PANG L, WANG Y W, SONG Y Z, et al. Cross-domain adversarial feature learning for sketch re-identification[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 609-617. 10.1145/3240508.3240606 |
24 | WU A C, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5390-5399. 10.1109/iccv.2017.575 |
25 | YE M, LAN X Y, WANG Z, et al. Bi-directional center-constrained top-ranking for visible thermal person re-identification[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 407-419. 10.1109/tifs.2019.2921454 |
26 | ZHU Y X, YANG Z, WANG L, et al. Hetero-center loss for cross-modality person Re-identification[J]. Neurocomputing, 2020, 386: 97-109. 10.1016/j.neucom.2019.12.100 |
27 | HAO Y, WANG N N, LI J, et al. HSME: hypersphere manifold embedding for visible thermal person re-identification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 8385-8392. 10.1609/aaai.v33i01.33018385 |
28 | YE M, LAN X Y, LENG Q M. Modality-aware collaborative learning for visible thermal person re-identification[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 347-355. 10.1145/3343031.3351043 |
29 | FENG Z X, LAI J H, XIE X H. Learning modality-specific representations for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 579-590. 10.1109/tip.2019.2928126 |
30 | LIU C T, WU C W, WANG Y C F, et al. Spatially and temporally efficient non-local attention network for video-based person re-identification[C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: No.77. 10.1145/3377170.3377253 |
31 | SHAO R, LAN X Y, LI J W, et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10015-10023. 10.1109/cvpr.2019.01026 |
32 | YIN J H, MA Z Y, XIE J Y, et al. DF2AM: dual-level feature fusion and affinity modeling for RGB-infrared cross-modality person re-identification[EB/OL]. (2021-04-01) [2021-06-10].. 10.1016/j.neucom.2022.09.077 |
33 | HARWOOD B, VIJAY K B G, CARNEIRO G, et al. Smart mining for deep metric learning[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2840-2848. 10.1109/iccv.2017.307 |
34 | WANG Y M, CHOI J, MORARIU V I, et al. Mining discriminative triplets of patches for fine-grained classification[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1163-1172. 10.1109/cvpr.2016.131 |
35 | WANG C, ZHANG Q, HUANG C, et al. Mancs: a multi-task attentional network with curriculum sampling for person re-identification[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 384-400. |
36 | NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): No.605. 10.3390/s17030605 |
37 | HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. (2017-11-21) [2020-10-10].. 10.21203/rs.3.rs-1501673/v1 |
38 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. 10.1109/cvpr.2005.4 |
39 | YE M, SHEN J B, LIN G J, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893. |
[1] | 贾洁茹, 杨建超, 张硕蕊, 闫涛, 陈斌. 基于自蒸馏视觉Transformer的无监督行人重识别[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2893-2902. |
[2] | 王翠, 邓淼磊, 张德贤, 李磊, 杨晓艳. 基于图像的端到端行人搜索算法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2544-2550. |
[3] | 吴祖成, 吴小俊, 徐天阳. 基于模态内细粒度特征关系提取的图像文本检索模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3776-3783. |
[4] | 李牧, 杨宇恒, 柯熙政. 基于混合特征提取与跨模态特征预测融合的情感识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 86-93. |
[5] | 刘秋杰, 万源, 吴杰. 深度双模态源域对称迁移学习的跨模态检索[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 24-31. |
[6] | 黄懿蕊, 罗俊玮, 陈景强. 基于对比学习和GIF标记的多模态对话回复检索[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 32-38. |
[7] | 何嘉明, 杨巨成, 吴超, 闫潇宁, 许能华. 基于多模态图卷积神经网络的行人重识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2182-2189. |
[8] | 郭玉彬, 文向, 刘攀, 李西明. 基于双流结构的跨模态行人重识别关系网络[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1803-1810. |
[9] | 谭钰, 王小琴, 蓝如师, 刘振丙, 罗笑南. 基于判别性矩阵分解的多标签跨模态哈希检索[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1349-1354. |
[10] | 张广耀, 宋纯锋. 融合人体全身表观特征的行人头部跟踪模型[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1372-1377. |
[11] | 孙杰, 吴绍鑫, 王学军, 华璟. 基于Sophon SC5+芯片构架的行人搜索算法与优化[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 744-751. |
[12] | 姚英茂, 姜晓燕. 基于图卷积网络与自注意力图池化的视频行人重识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 728-735. |
[13] | 钟建华, 邱创一, 巢建树, 明瑞成, 钟剑锋. 基于语义引导自注意力网络的换衣行人重识别模型[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3719-3726. |
[14] | 王晓雨, 王展青, 熊威. 深度非对称离散跨模态哈希方法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2461-2470. |
[15] | 陈代丽, 许国良. 基于注意力机制学习域内变化的跨域行人重识别方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1391-1397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||