《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (8): 2462-2470.DOI: 10.11772/j.issn.1001-9081.2022060886
所属专题: 网络空间安全
收稿日期:2022-06-20
									
				
											修回日期:2022-08-30
									
				
											接受日期:2022-09-01
									
				
											发布日期:2022-09-22
									
				
											出版日期:2023-08-10
									
				
			通讯作者:
					李曼曼
							作者简介:林东东(1998—),男,河南邓州人,硕士研究生,主要研究方向:深度学习、智能化分组密码分析基金资助:
        
                                                                                                            Dongdong LIN1,2, Manman LI1,2( ), Shaozhen CHEN1,2
), Shaozhen CHEN1,2
			  
			
			
			
                
        
    
Received:2022-06-20
									
				
											Revised:2022-08-30
									
				
											Accepted:2022-09-01
									
				
											Online:2022-09-22
									
				
											Published:2023-08-10
									
			Contact:
					Manman LI   
							About author:LIN Dongdong,born in 1998, M. S. candidate. His research interests include deep learning, intelligent cryptanalysis of block cipher.Supported by:摘要:
针对KATAN48算法的安全性分析问题,提出了一种基于神经区分器的KATAN48算法条件差分分析方法。首先,研究了多输出差分神经区分器的基本原理,并将它应用于KATAN48算法,根据KATAN48算法的数据格式调整了深度残差神经网络的输入格式和超参数;其次,建立了KATAN48算法的混合整数线性规划(MILP)模型,并用该模型搜索了前加差分路径及相应的约束条件;最后,利用多输出差分神经区分器,至多给出了80轮KATAN48算法的实际密钥恢复攻击结果。实验结果表明,在单密钥下,KATAN48算法的实际攻击的轮数提高了10轮,可恢复的密钥比特数增加了22比特,数据复杂度和时间复杂度分别由234和234降至216.39和219.68。可见,相较于前人单密钥下的实际攻击,所提方法能够有效增加攻击轮数和可恢复的密钥比特数,同时降低攻击的计算复杂度。
中图分类号:
林东东, 李曼曼, 陈少真. 基于神经区分器的KATAN48算法条件差分分析方法[J]. 计算机应用, 2023, 43(8): 2462-2470.
Dongdong LIN, Manman LI, Shaozhen CHEN. Conditional differential cryptanalysis method of KATAN48 algorithm based on neural distinguishers[J]. Journal of Computer Applications, 2023, 43(8): 2462-2470.
| 攻击类型 | 攻击条件 | 攻击 轮数 | 时间 复杂度 | 数据 复杂度 | 参考 文献 | 
|---|---|---|---|---|---|
| 条件差分 分析 | 单密钥 | 70 | 234 | 234CP | 文献[ | 
| 相关密钥 | 103 | 225 | 225CP | 文献[ | |
| 相关密钥 | 140 | 277.4 | 227CP | 文献[ | |
| MIMT ASR | 单密钥 | 105 | 279.1 | 144CP | 文献[ | 
| Match Box MIMT | 单密钥 | 129 | 278.5 | 32CP | 文献[ | 
| 多维MIMT | 单密钥 | 148 | 279 | 2KP | 文献[ | 
| 基于神经区分器的条件差分分析 | 单密钥 | 80 | 219.68 | 216.39CP | 本文 | 
表1 KATAN48算法的攻击结果
Tab. 1 Attack results of KATAN48 algorithm
| 攻击类型 | 攻击条件 | 攻击 轮数 | 时间 复杂度 | 数据 复杂度 | 参考 文献 | 
|---|---|---|---|---|---|
| 条件差分 分析 | 单密钥 | 70 | 234 | 234CP | 文献[ | 
| 相关密钥 | 103 | 225 | 225CP | 文献[ | |
| 相关密钥 | 140 | 277.4 | 227CP | 文献[ | |
| MIMT ASR | 单密钥 | 105 | 279.1 | 144CP | 文献[ | 
| Match Box MIMT | 单密钥 | 129 | 278.5 | 32CP | 文献[ | 
| 多维MIMT | 单密钥 | 148 | 279 | 2KP | 文献[ | 
| 基于神经区分器的条件差分分析 | 单密钥 | 80 | 219.68 | 216.39CP | 本文 | 
| 符号 | 含义 | 符号 | 含义 | 
|---|---|---|---|
| 48比特明文数据 | 第 | ||
| 48比特密文数据 | 第 | ||
| 第 | |||
| 第 | |||
| 80比特主密钥 | 明文组 | ||
| 第 | 明文结构 | ||
| 第 | 密文结构 | ||
| 第 | 
表2 符号说明
Tab. 2 Symbol description
| 符号 | 含义 | 符号 | 含义 | 
|---|---|---|---|
| 48比特明文数据 | 第 | ||
| 48比特密文数据 | 第 | ||
| 第 | |||
| 第 | |||
| 80比特主密钥 | 明文组 | ||
| 第 | 明文结构 | ||
| 第 | 密文结构 | ||
| 第 | 
| 超参数 | 参数取值 | 超参数 | 参数取值 | 
|---|---|---|---|
| 训练集规模 | 107 | 优化器 | Adam | 
| 测试集规模 | 106 | 学习率 | 10-4 | 
| 批处理规模 | 1 000 | 损失函数 | MSE | 
| 迭代周期 | 200 | 
表3 神经网络超参数设置
Tab. 3 Hyperparameter setting of neural network
| 超参数 | 参数取值 | 超参数 | 参数取值 | 
|---|---|---|---|
| 训练集规模 | 107 | 优化器 | Adam | 
| 测试集规模 | 106 | 学习率 | 10-4 | 
| 批处理规模 | 1 000 | 损失函数 | MSE | 
| 迭代周期 | 200 | 
| 区分器轮数 | 多差分堆叠数 | 准确率/% | 
|---|---|---|
| 40 | 1 | 61.7 | 
| 40 | 4 | 74.2 | 
| 40 | 16 | 90.9 | 
| 40 | 48 | 98.7 | 
| 50 | 1 | 50.1 | 
| 50 | 48 | 54.0 | 
表4 不同差分堆叠个数下KATAN48算法的MODND准确率
Tab. 4 MODND accuracy of KATAN48 algorithm with different numbers of stacked differences
| 区分器轮数 | 多差分堆叠数 | 准确率/% | 
|---|---|---|
| 40 | 1 | 61.7 | 
| 40 | 4 | 74.2 | 
| 40 | 16 | 90.9 | 
| 40 | 48 | 98.7 | 
| 50 | 1 | 50.1 | 
| 50 | 48 | 54.0 | 
| 准确率/% | 准确率/% | 准确率/% | 准确率/% | ||||
|---|---|---|---|---|---|---|---|
| 47 | 84.9 | 35 | 61.6 | 23 | 75.6 | 11 | 59.8 | 
| 46 | 91.8 | 34 | 64.1 | 22 | 86.5 | 10 | 62.3 | 
| 45 | 93.1 | 33 | 66.7 | 21 | 85.4 | 9 | 66.3 | 
| 44 | 97.2 | 32 | 66.9 | 20 | 86.4 | 8 | 65.4 | 
| 43 | 97.4 | 31 | 65.5 | 19 | 60.5 | 7 | 72.6 | 
| 42 | 98.7 | 30 | 73.7 | 18 | 58.9 | 6 | 69.7 | 
| 41 | 77.5 | 29 | 78.3 | 17 | 62.9 | 5 | 76.4 | 
| 40 | 83.7 | 28 | 77.5 | 16 | 66.7 | 4 | 74.7 | 
| 39 | 72.9 | 27 | 76.7 | 15 | 58.6 | 3 | 76.9 | 
| 38 | 72.5 | 26 | 76.9 | 14 | 54.0 | 2 | 75.0 | 
| 37 | 73.3 | 25 | 88.5 | 13 | 57.9 | 1 | 77.9 | 
| 36 | 78.5 | 24 | 87.1 | 12 | 58.1 | 0 | 79.5 | 
表5 不同输入差分下40轮KATAN48算法MODND准确率
Tab. 5 MODND accuracy of 40-round KATAN48 algorithm with different input differences
| 准确率/% | 准确率/% | 准确率/% | 准确率/% | ||||
|---|---|---|---|---|---|---|---|
| 47 | 84.9 | 35 | 61.6 | 23 | 75.6 | 11 | 59.8 | 
| 46 | 91.8 | 34 | 64.1 | 22 | 86.5 | 10 | 62.3 | 
| 45 | 93.1 | 33 | 66.7 | 21 | 85.4 | 9 | 66.3 | 
| 44 | 97.2 | 32 | 66.9 | 20 | 86.4 | 8 | 65.4 | 
| 43 | 97.4 | 31 | 65.5 | 19 | 60.5 | 7 | 72.6 | 
| 42 | 98.7 | 30 | 73.7 | 18 | 58.9 | 6 | 69.7 | 
| 41 | 77.5 | 29 | 78.3 | 17 | 62.9 | 5 | 76.4 | 
| 40 | 83.7 | 28 | 77.5 | 16 | 66.7 | 4 | 74.7 | 
| 39 | 72.9 | 27 | 76.7 | 15 | 58.6 | 3 | 76.9 | 
| 38 | 72.5 | 26 | 76.9 | 14 | 54.0 | 2 | 75.0 | 
| 37 | 73.3 | 25 | 88.5 | 13 | 57.9 | 1 | 77.9 | 
| 36 | 78.5 | 24 | 87.1 | 12 | 58.1 | 0 | 79.5 | 
| 输出 差分 | 约束条件数 | 差分路径轮数 | 输出 差分 | 约束条件数 | 差分路径轮数 | 
|---|---|---|---|---|---|
| 42 | 15 | 23 | 45 | 12 | 16 | 
| 43 | 12 | 17 | 46 | 18 | 20 | 
| 44 | 16 | 17 | 
表6 不同输出差分下MILP模型的约束条件个数和差分路径轮数
Tab. 6 Number of constraint conditions and rounds of differential paths of MILP model with different output differences
| 输出 差分 | 约束条件数 | 差分路径轮数 | 输出 差分 | 约束条件数 | 差分路径轮数 | 
|---|---|---|---|---|---|
| 42 | 15 | 23 | 45 | 12 | 16 | 
| 43 | 12 | 17 | 46 | 18 | 20 | 
| 44 | 16 | 17 | 
| 轮数 | 差分状态 | 约束条件 | 
|---|---|---|
| 0 | 000100000000000000000000100000000100000000100100 001000000000000000000001000000001000000001001000 | |
| 1 | 010000000000000000000010000000010000000010010000 100000000000000000000100000000100000000100100000 | |
| 2 | 000000000000000000001000000001000000001001000001 000000000000000000000000000010000000010010000010 | |
| 3 | 000000000000000000000000000100000000100100000100 000000000000000000000000001000000001001000001000 | |
| 4 | 000000000000000000000000010000000010010000010000 000000000000000000000000100000000100100000100000 | |
| 5 | 000000000000000000000001000000001001000001000000 000000000000000000000010000000010010000010000000 | |
| 6 | 000000000000000000000100000000100100000100000000 000000000000000000001000000001001000001000000000 | |
| 7 | 000000000000000000010000000010010000010000000000 000000000000000000000000000100100000100000000000 | |
| 8 | 000000000000000000000000001001000001000000000000 000000000000000000000000010010000010000000000000 | |
| 9 | 000000000000000000000000100100000100000000000000 000000000000000000000001001000001000000000000000 | |
| 10 | 000000000000000000000010010000010000000000000000 000000000000000000000100100000100000000000000000 | |
| 11 | 000000000000000000001001000001000000000000000000 000000000000000000010010000010000000000000000000 | |
| 12 | 000000000000000000000100000100000000000000000000 000000000000000000001000001000000000000000000000 | |
| 13 | 000000000000000000010000010000000000000000000000 000000000000000000100000100000000000000000000000 | |
| 14 | 000000000000000001000001000000000000000000000000 000000000000000010000010000000000000000000000000 | |
| 15 | 000000000000000100000100000000000000000000000000 000000000000001000001000000000000000000000000000 | |
| 16 | 000000000000010000010000000000000000000000000000 000000000000100000100000000000000000000000000000 | |
| 17 | 000000000001000001000000000000000000000000000000 000000000010000010000000000000000000000000000000 | |
| 18 | 000000000100000100000000000000000000000000000000 000000001000001000000000000000000000000000000000 | |
| 19 | 000000010000010000000000000000000000000000000000 000000100000100000000000000000000000000000000000 | |
| 20 | 000001000001000000000000000000000000000000000000 000010000010000000000000000000000000000000000000 | |
| 21 | 000100000100000000000000000000000000000000000000 001000001000000000000000000000000000000000000000 | |
| 22 | 010000010000000000000000000000000000000000000000 100000100000000000000000000000000000000000000000 | |
| 23 | 000001000000000000000000000000000000000000000000 | 
表7 KATAN48算法的差分路径及对应的约束条件
Tab. 7 Differential paths and corresponding constraint conditions of KATAN48 algorithm
| 轮数 | 差分状态 | 约束条件 | 
|---|---|---|
| 0 | 000100000000000000000000100000000100000000100100 001000000000000000000001000000001000000001001000 | |
| 1 | 010000000000000000000010000000010000000010010000 100000000000000000000100000000100000000100100000 | |
| 2 | 000000000000000000001000000001000000001001000001 000000000000000000000000000010000000010010000010 | |
| 3 | 000000000000000000000000000100000000100100000100 000000000000000000000000001000000001001000001000 | |
| 4 | 000000000000000000000000010000000010010000010000 000000000000000000000000100000000100100000100000 | |
| 5 | 000000000000000000000001000000001001000001000000 000000000000000000000010000000010010000010000000 | |
| 6 | 000000000000000000000100000000100100000100000000 000000000000000000001000000001001000001000000000 | |
| 7 | 000000000000000000010000000010010000010000000000 000000000000000000000000000100100000100000000000 | |
| 8 | 000000000000000000000000001001000001000000000000 000000000000000000000000010010000010000000000000 | |
| 9 | 000000000000000000000000100100000100000000000000 000000000000000000000001001000001000000000000000 | |
| 10 | 000000000000000000000010010000010000000000000000 000000000000000000000100100000100000000000000000 | |
| 11 | 000000000000000000001001000001000000000000000000 000000000000000000010010000010000000000000000000 | |
| 12 | 000000000000000000000100000100000000000000000000 000000000000000000001000001000000000000000000000 | |
| 13 | 000000000000000000010000010000000000000000000000 000000000000000000100000100000000000000000000000 | |
| 14 | 000000000000000001000001000000000000000000000000 000000000000000010000010000000000000000000000000 | |
| 15 | 000000000000000100000100000000000000000000000000 000000000000001000001000000000000000000000000000 | |
| 16 | 000000000000010000010000000000000000000000000000 000000000000100000100000000000000000000000000000 | |
| 17 | 000000000001000001000000000000000000000000000000 000000000010000010000000000000000000000000000000 | |
| 18 | 000000000100000100000000000000000000000000000000 000000001000001000000000000000000000000000000000 | |
| 19 | 000000010000010000000000000000000000000000000000 000000100000100000000000000000000000000000000000 | |
| 20 | 000001000001000000000000000000000000000000000000 000010000010000000000000000000000000000000000000 | |
| 21 | 000100000100000000000000000000000000000000000000 001000001000000000000000000000000000000000000000 | |
| 22 | 010000010000000000000000000000000000000000000000 100000100000000000000000000000000000000000000000 | |
| 23 | 000001000000000000000000000000000000000000000000 | 
| 区分器轮数 | 准确率/% | 区分器轮数 | 准确率/% | 
|---|---|---|---|
| 43 | 85.8 | 47 | 60.0 | 
| 44 | 76.8 | 48 | 56.4 | 
| 45 | 73.1 | 49 | 55.5 | 
| 46 | 67.3 | 50 | 54.0 | 
表8 KATAN48算法的区分器准确率
Tab. 8 Distinguisher accuracy of KATAN48 algorithm
| 区分器轮数 | 准确率/% | 区分器轮数 | 准确率/% | 
|---|---|---|---|
| 43 | 85.8 | 47 | 60.0 | 
| 44 | 76.8 | 48 | 56.4 | 
| 45 | 73.1 | 49 | 55.5 | 
| 46 | 67.3 | 50 | 54.0 | 
| 攻击轮数 | 成功次数 | 攻击轮数 | 成功次数 | 
|---|---|---|---|
| 78 | 97 | 80 | 98 | 
| 79 | 94 | 
表9 KATAN48算法的密钥恢复攻击结果
Tab. 9 Key recovery attack results of KATAN48 algorithm
| 攻击轮数 | 成功次数 | 攻击轮数 | 成功次数 | 
|---|---|---|---|
| 78 | 97 | 80 | 98 | 
| 79 | 94 | 
| 攻击类型 | 攻击 轮数 | 恢复的密钥 比特数 | 时间 复杂度 | 数据 复杂度 | 
|---|---|---|---|---|
| 条件差分分析[ | 70 | 2 | 234 | 234 | 
| 基于神经区分器的 条件差分分析 | 78 | 20 | 218.10 | 214.26 | 
| 79 | 22 | 218.28 | 214.54 | |
| 80 | 24 | 219.68 | 216.39 | 
表10 KATAN48算法的单密钥攻击结果
Tab. 10 Key recovery attack results of KATAN48 algorithm in single key setting
| 攻击类型 | 攻击 轮数 | 恢复的密钥 比特数 | 时间 复杂度 | 数据 复杂度 | 
|---|---|---|---|---|
| 条件差分分析[ | 70 | 2 | 234 | 234 | 
| 基于神经区分器的 条件差分分析 | 78 | 20 | 218.10 | 214.26 | 
| 79 | 22 | 218.28 | 214.54 | |
| 80 | 24 | 219.68 | 216.39 | 
| 1 | 张政馗,庞为光,谢文静,等. 面向实时应用的深度学习研究综述[J]. 软件学报, 2020, 31(9): 2654-2677. | 
| ZHANG Z K, PANG W G, XIE W J, et al. Deep learning for real-time applications: a survey[J]. Journal of Software, 2020, 31(9): 2654-2677. | |
| 2 | HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. 10.1162/neco.2006.18.7.1527 | 
| 3 | LAWRENCE S, GILES C L, TSOI A C, et al. Face recognition: a convolutional neural network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1):98-113. 10.1109/72.554195 | 
| 4 | WILLIAMS R, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2):270-280. 10.1162/neco.1989.1.2.270 | 
| 5 | RIVEST R L. Cryptography and machine learning[C]// Proceedings of the 1991 International Conference on the Theory and Application of Cryptology, LNCS 739. Berlin: Springer, 1993: 427-439. 10.1007/3-540-57332-1_36 | 
| 6 | GREYDANUS S. Learning the enigma with recurrent neural networks[EB/OL]. (2017-09-07) [2022-06-24].. | 
| 7 | GOMEZ A N, HUANG S C, ZHANG I, et al. Unsupervised cipher cracking using discrete GANs[EB/OL]. (2018-01-15) [2022-06-15].. | 
| 8 | GOHR A. Improving attacks on round-reduced speck32/64 using deep learning[C]// Proceedings of the 2019 Annual International Cryptology Conference. Cham: Springer, 2019: 150-179. 10.1007/978-3-030-26951-7_6 | 
| 9 | BAO Z Z, GUO J, LIU M C, et al. Conditional differential-neural cryptanalysis[EB/OL]. (2021-05-31) [2021-07-19].. | 
| 10 | BENAMIRA A, GERAULT D, PEYRIN T, et al. A deeper look at machine learning-based cryptanalysis[C]// Proceedings of the 2021 Annual International Conference on the Theory and Applications of Cryptographic Techniques, LNCS 12696. Cham: Springer, 2021: 805-835. | 
| 11 | HOU Z Z, REN J J, CHEN S Z. Improve neural distinguishers of SIMON and SPECK[J]. Security and Communication Networks, 2021, 2021: No.9288229. 10.1155/2021/9288229 | 
| 12 | CHEN Y, SHEN Y T, YU H B, et al. A new neural distinguisher considering features derived from multiple ciphertext pairs[EB/OL].[2022-01-20]. . 10.1093/comjnl/bxac019 | 
| 13 | DE CANNIÈRE C, DUNKELMAN O, KNEŽEVIĆ M. KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers[C]// Proceedings of the 2009 International Workshop on Cryptographic Hardware and Embedded Systems, LNCS 5747. Berlin: Springer, 2009: 272-288. | 
| 14 | KNELLWOLF S, MEIER W, NAYA-PLASENCIA M. Conditional differential cryptanalysis of NLFSR-based cryptosystems[C]// Proceedings of the 2010 International Conference on the Theory and Application of Cryptology and Information Security, LNCS 6477. Berlin: Springer, 2010: 130-145. | 
| 15 | KNELLWOLF S, MEIER W, NAYA-PLASENCIA M. Conditional differential cryptanalysis of Trivium and KATAN[C]// Proceedings of the 2011 International Workshop on Selected Areas in Cryptography, LNCS 7118. Berlin: Springer, 2012: 200-212. | 
| 16 | 刘爱森,王美琴,李艳斌. KATAN密码算法的相关密钥差分攻击[J]. 密码学报, 2015, 2(1): 77-91. | 
| LIU A S, WANG M Q, LI Y B. Related-key conditional differential cryptanalysis of KATAN family[J]. Journal of Cryptologic Research, 2015, 2(1): 77-91. | |
| 17 | ISOBE T, SHIBUTANI K. Improved all-subkeys recovery attacks on FOX, KATAN and SHACAL-2 block ciphers[C]// Proceedings of the 2014 International Workshop on Fast Software Encryption, LNCS 8540. Berlin: Springer, 2015: 104-126. | 
| 18 | FUHR T, MINAUD B. Match box meet-in-the-middle attack against KATAN[C]// Proceedings of the 2014 International Workshop on Fast Software Encryption, LNCS 8540. Berlin: Springer, 2015: 61-81. | 
| 19 | SHAHRAM R, HAVARD R. Improved multi-dimensional meet-in-the-middle cryptanalysis of KATAN[J]. Tatra Mountains Mathematical Publications, 2016, 67(1): 149-166. 10.1515/tmmp-2016-0037 | 
| 20 | PELIKAN M, GOLDBERG D E, CANTÚ-PAZ E. BOA: the Bayesian optimization algorithm[C]// Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation. San Francisco: Morgan Kaufmann Publishers Inc., 1999: 525-532. 10.1162/106365600750078808 | 
| 21 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 | 
| 22 | BIHAM E, CHEN R. Near-collisions of SHA-0[C]// Proceedings of the 2004 Annual International Cryptology Conference, LNCS 3152. Berlin: Springer, 2004: 290-305. | 
| 23 | XING Z H, ZHANG W Y, HAN G Y. Improved conditional differential analysis on NLFSR-based block cipher KATAN32 with MILP[C]// Proceedings of the 2020 International Conference on Security and Privacy in New Computing Environments, LNICST 344. Cham: Springer, 2020: 370-393. 10.1007/978-3-030-66922-5_26 | 
| [1] | 李艳俊, 葛耀东, 王琦, 张伟国, 刘琛. 改进的KLEIN算法及其量子分析[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2810-2817. | 
| [2] | 项勇, 李艳俊, 黄丁韫, 陈愚, 谢惠琴. 全轮Shadow算法的差分和线性特征分析[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3839-3843. | 
| [3] | 赵光耀, 沈璇, 余波, 易晨晖, 李祯. 缩减轮的超轻量级分组密码算法PFP的不可能差分分析[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2784-2788. | 
| [4] | 石一鹏, 刘杰, 祖锦源, 张涛, 张国群. 基于混合整数线性规划模型的SPONGENT S盒紧凑约束分析[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1504-1510. | 
| [5] | 丛旌, 韦永壮, 刘争红. SM4密码算法的阶梯式相关能量分析[J]. 计算机应用, 2020, 40(7): 1977-1982. | 
| [6] | 刘宗甫, 袁征, 赵晨曦, 朱亮. 对PICO算法基于可分性的积分攻击[J]. 计算机应用, 2020, 40(10): 2967-2972. | 
| [7] | 杨晓华, 郭健全. 模糊环境下多周期多决策生鲜闭环物流网络[J]. 计算机应用, 2019, 39(7): 2168-2174. | 
| [8] | 马云飞, 王韬, 陈浩, 黄长阳. 轻量级分组密码SIMON代数故障攻击[J]. 计算机应用, 2017, 37(7): 1953-1959. | 
| [9] | 程璐, 魏悦川, 潘晓中, 李安辉. Zodiac密码算法的多维零相关线性分析[J]. 计算机应用, 2017, 37(6): 1605-1608. | 
| [10] | 王寿成, 徐进辉, 严迎建, 李功丽, 贾永旺. 面向密码流处理器的AES算法软件流水实现方法[J]. 计算机应用, 2017, 37(6): 1620-1624. | 
| [11] | 覃冠杰, 马建设, 程雪岷. 基于组合式爬山算法提高S盒非线性度的方法[J]. 计算机应用, 2015, 35(8): 2195-2198. | 
| [12] | 李灵琛, 韦永壮, 朱嘉良. 11轮3D分组密码算法的中间相遇攻击[J]. 计算机应用, 2015, 35(3): 700-703. | 
| [13] | 卫宏儒 郑雅菲 王新宁. ARIRANG-256的Biclique攻击[J]. 计算机应用, 2014, 34(1): 69-72. | 
| [14] | 苏崇茂. 7轮ARIA-256的不可能差分新攻击[J]. 计算机应用, 2012, 32(01): 45-48. | 
| [15] | 卢丹华 钟诚 杨锋. 基于多核多线程的AES保密模式[J]. 计算机应用, 2011, 31(04): 1003-1005. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||