1 |
黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647.
|
|
HUANG L W, JIANG B T, LYU S Y, et al. Survey on deep learning based recommender systems [J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
|
2 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
3 |
KANG W-C, McAULEY J. Self-attentive sequential recommendation [C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206.
|
4 |
SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from Transformer [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450.
|
5 |
FAN X, LIU Z, LIAN J, et al. Lighter and better: low-rank decomposed self-attention networks for next-item recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development of Information Retrieval. New York: ACM, 2021: 1733-1737.
|
6 |
LI W, GOU J, FAN Z. Session-based recommendation with temporal convolutional network to balance numerical gaps [J]. Neurocomputing, 2022, 493: 166-175.
|
7 |
BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. [2023-08-23]. .
|
8 |
FENG S, LI X, ZENG Y, et al. Personalized ranking metric embedding for next new POI recommendation [C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2069-2075.
|
9 |
HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [EB/OL]. [2021-06-30]. .
|
10 |
TANG J, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573.
|
11 |
XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation [C]// Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273.
|
12 |
QIU R, HUAN Z, YIN, H, et al. Contrastive learning for representation degeneration problem in sequential recommendation [C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 813-823.
|
13 |
YANG X-Y, XU F, YU J, et al. Graph neural network-guided contrastive learning for sequential recommendation [J]. Sensors, 2023, 23(12): 5572.
|
14 |
夏玉杰,时永鹏,高雅,等.降低滤波器组多载波信号峰均比的边信息嵌入选择性映射方法[J].计算机应用,2021,41(5):1425-1431.
|
|
XIA Y J, SHI Y P, GAO Y, et al. Selected mapping method with embedded side information to reduce PAPR of FBMC signals [J]. Journal of Computer Applications, 2021, 41(5): 1425-1431.
|
15 |
张少东,杨兴耀,于炯,等.基于对比学习和傅里叶变换的序列推荐算法[J].电子科技大学学报,2023,52(4):610-619.
|
|
ZHANG S D, YANG X Y, YU J, et al. Sequence recommendation based on contrast learning and Fourier transform [J]. Journal of University of Electronic Science and Technology of China, 2023, 52(4): 610-619.
|
16 |
CHEN B, LUO W, LUO D. Identification of audio processing operations based on convolutional neural network [C]// Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2018: 73-77.
|
17 |
ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2388-2399.
|
18 |
DU X, YUAN H, ZHAO P, et al. Contrastive enhanced slide filter mixer for sequential recommendation [C]// Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 2673-2685.
|
19 |
ZHOU K, WANG, H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization [C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1893-1902.
|
20 |
BIAN Y, HUANG J, CAI X, et al. On attention redundancy: a comprehensive study [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 930-945.
|
21 |
BA J L, KIROS J R, HINTON G E. Layer normalization [EB/OL]. [2023-09-01]. .
|
22 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et.al. Dropout: a simple way to prevent neural networks from overfitting [J]. The Journal of Machine Learning Research, 2014, 15: 1929-1958.
|
23 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
24 |
刘华锋,景丽萍,于剑.融合社交信息的矩阵分解推荐方法研究综述[J].软件学报,2018,29(2):340-362.
|
|
LIU H F, JING L P, YU J. Survey of matrix factorization based recommendation methods by integrating social information [J]. Journal of Software, 2018, 29(2): 340-362.
|
25 |
RENDLE S, FREUDENTHALER C, GANTER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461.
|
26 |
ZHAO W X, MU S, HOU Y, et al. RecBole: towards a unified, comprehensive and efficient framework for recommendation algorithms [C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 4653-4664.
|