1 |
ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[EB/OL]. [2023-09-21]. .
|
2 |
XU H, CHEN W, ZHAO N, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018:187-196.
|
3 |
LI D, CHEN D, JIN B, et al. MAD-GAN: multivariate anomaly detection for time series data with Generative adversarial networks[C]// Proceedings of the 2019 International Conference on Artificial Neural Networks, LNCS 11730. Cham: Springer, 2019:703-716.
|
4 |
GEIGER A, LIU D, ALNEGHEIMISH S, et al. TadGAN: time series anomaly detection using generative adversarial networks[C]// Proceedings of the 2020 IEEE International Conference on Big Data. Piscataway: IEEE, 2020: 33-43.
|
5 |
PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551.
|
6 |
LIN S, CLARK R, BIRKE R, et al. Anomaly detection for time series using VAE-LSTM hybrid model[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020:4322-4326.
|
7 |
TULI S, CASALE G, JENNINGS N R. TranAD: deep Transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of the VLDB Endowment, 2022, 15(6): 1201-1214.
|
8 |
XU J, WU H, WANG J, et al. Anomaly Transformer: time series anomaly detection with association discrepancy[EB/OL]. (2022-06-29) [2023-09-21]..
|
9 |
SHEN L, LI Z, KWOK J T. Timeseries anomaly detection using temporal hierarchical one-class network[C]// Proceedings of the 34th International Conference on Neural Information Processing System. Red Hook, NY: Curran Associates Inc., 2020: 13016-13026.
|
10 |
丁小欧,于晟健,王沐贤,等.基于相关性分析的工业时序数据异常检测[J].软件学报,2020,31(3):726-747.
|
|
DING X O, YU S J, WANG M X, et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software, 2020, 31(3): 726-747.
|
11 |
曾惟如,吴佳,闫飞.基于层级实时记忆算法的时间序列异常检测算法[J].电子学报,2018,46(2):325-332.
|
|
ZENG W R, WU J, YAN F. Time series anomaly detection model based on hierarchical temporal memory[J]. Acta Electronica Sinica, 2018, 46(2): 325-332.
|
12 |
ZHANG C, SONG D, CHEN Y, et al. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019:1409-1416.
|
13 |
LI Z, ZHAO Y, HAN J, et al. Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 3220-3230.
|
14 |
DING C, SUN S, ZHAO J. MST-GAT: a multimodal spatial-temporal graph attention network for time series anomaly detection[J]. Information Fusion, 2023, 89: 527-536.
|
15 |
张本初,乔焰,胡荣耀.结合对抗互信息的多变量时间序列抗噪异常检测[J/OL].计算机应用研究,2024 [2024-04-12]..
|
|
ZHANG B C, QIAO Y, HU R Y. Robust anomaly detection for multivariate time series based on adversarial mutual information[J/OL]. Application Research of Computers, 2024 [2024-04-12]..
|
16 |
YANG L, HONG S. Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 25038-25054.
|
17 |
ZHANG W, YANG L, GENG S, et al. Self-supervised time series representation learning via cross reconstruction Transformer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023 (Early Access): 1-10.
|
18 |
ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]// Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 2018-2025.
|
19 |
ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 2528-2535.
|
20 |
WANG X, PI D, ZHANG X, et al. Variational Transformer-based anomaly detection approach for multivariate time series[J]. Measurement, 2022, 191: No.110791.
|
21 |
SU Y, ZHAO Y, NIU C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2828-2837.
|
22 |
DU B, SUN X, YE J, et al. GAN-based anomaly detection for multivariate time series using polluted training set[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12208-12219.
|
23 |
YUE Z, WANG Y, DUAN J, et al. TS2Vec: towards universal representation of time series[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 8980-8987.
|
24 |
JEONG K J, SHIN Y M. Time-series anomaly detection with implicit neural representation[EB/OL]. [2023-10-17]..
|