1 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 91-99.
|
2 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
|
3 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
|
4 |
LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 21002-21012.
|
5 |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
|
6 |
CHEN J, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
|
7 |
OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
|
8 |
SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2023-10-10]..
|
9 |
SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]// Proceedings of the 2022 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 13715. Cham: Springer, 2023: 443-459.
|
10 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722.
|
11 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-08-15]..
|
12 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856.
|
13 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1580-1589.
|
14 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
15 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19
|
16 |
LI X, HU X, YANG J. Spatial group-wise enhance: improving semantic feature learning in convolutional networks[EB/OL]. [2023-09-22]..
|
17 |
LIU H, LIU F, FAN X, et al. Polarized self-attention: towards high-quality pixel-wise regression[EB/OL]. [2023-10-12]..
|
18 |
MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3138-3147.
|
19 |
ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 2235-2239.
|
20 |
DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 213-226.
|
21 |
李安达,吴瑞明,李旭东.改进YOLOv7的小目标检测算法研究[J].计算机工程与应用,2024,60(1):122-134.
|
|
LI A D, WU R M, LI X D. Research on improving YOLOv7's small target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 122-134.
|
22 |
秦强强,廖俊国,周弋荀.基于多分支混合注意力的小目标检测算法[J].计算机应用,2023,43(11):3579-3586.
|
|
QIN Q Q, LIAO J G, ZHOU Y X. Small object detection algorithm based on split mixed attention[J]. Journal of Computer Applications, 2023, 43(11): 3579-3586.
|
23 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
|
24 |
吴明杰,云利军,陈载清,等.改进YOLOv5s的无人机视角下小目标检测算法[J].计算机工程与应用,2024,60(2):191-199.
|
|
WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small target detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199.
|
25 |
刘涛,高一萌,柴蕊,等.改进YOLOv5s的无人机视角下小目标检测算法[J].计算机工程与应用,2024,60(1):110-121.
|
|
LIU T, GAO Y M, CHAI R, et al. Improving YOLOv5s UAV view small object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 110-121.
|
26 |
梁秀满,贾梓涵,于海峰,等.基于改进YOLOv7的无人机图像目标检测算法[J].无线电工程,2024,54(4):937-946.
|
|
LIANG X M, JIA Z H, YU H F, et al. UAV image object detection algorithm based on improved YOLOv7[J]. Radio Engineering, 2024, 54(4): 937-946.
|