《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (7): 2200-2207.DOI: 10.11772/j.issn.1001-9081.2023071033
收稿日期:2023-07-31
									
				
											修回日期:2023-09-23
									
				
											接受日期:2023-10-10
									
				
											发布日期:2023-10-26
									
				
											出版日期:2024-07-10
									
				
			通讯作者:
					姬张建
							作者简介:杜娜(1999—),女,山西吕梁人,硕士研究生,主要研究方向:计算机视觉、目标检测。基金资助:Received:2023-07-31
									
				
											Revised:2023-09-23
									
				
											Accepted:2023-10-10
									
				
											Online:2023-10-26
									
				
											Published:2024-07-10
									
			Contact:
					Zhangjian JI   
							About author:DU Na, born in 1999, M. S. candidate. Her research interests include computer vision, object detection.Supported by:摘要:
针对航拍场景中包含的目标尺寸小、有效特征信息少的问题,提出一种基于改进的变焦网络VFNet(VariFocalNet)的航拍场景中微小目标检测算法。首先,为增强微小目标的特征表征能力,采用特征提取性能更好的循环层聚合网络(RLANet)代替ResNet作为主干网络;其次,为解决特征金字塔自顶向下融合时顶层特征信息丢失问题,引入特征增强模块(FEM);然后,为解决现有标签分配方法在微小目标标签分配上的样本分布不平衡问题,改进的VFNet采用了基于高斯感受野的标签分配方法;最后,为减小微小目标对位置偏移的敏感性,引入一种边界框回归损失函数Wasserstein损失测量预测边界框高斯分布和真值框高斯分布的相似性。在AI-TOD数据集上的实验结果表明:改进后的VFNet算法的平均精度均值(mAP)达到了14.9%;与改进前的算法相比,在航拍场景下的微小目标上的检测mAP提高了4.7个百分点。
中图分类号:
姬张建, 杜娜. 基于改进VariFocalNet的微小目标检测[J]. 计算机应用, 2024, 44(7): 2200-2207.
Zhangjian JI, Na DU. Tiny target detection based on improved VariFocalNet[J]. Journal of Computer Applications, 2024, 44(7): 2200-2207.
| 算法 | 主干 | mAP | ||||||
|---|---|---|---|---|---|---|---|---|
| 文献[ | RLANet-50 | 11.1 | 25.8 | 8.1 | 2.6 | 12.0 | 14.9 | 21.6 | 
| VFNet[ | ResNet-50 | 10.2 | 23.5 | 7.2 | 2.3 | 11.0 | 13.3 | 19.8 | 
| Faster R-CNN[ | ResNet-50 | 11.1 | 26.3 | 7.6 | 0.0 | 7.2 | 23.3 | 33.6 | 
| Cascade R-CNN[ | ResNet-50 | 13.8 | 30.8 | 10.5 | 0.0 | 10.6 | 25.5 | 36.6 | 
| SSD[ | ResNet-50 | 7.0 | 21.7 | 2.8 | 1.0 | 4.7 | 11.5 | 13.5 | 
| RetinaNet[ | ResNet-50 | 8.7 | 22.3 | 4.8 | 2.4 | 8.9 | 12.2 | 16.0 | 
| RepPonits[ | ResNet-50 | 9.2 | 23.6 | 5.3 | 2.5 | 9.2 | 12.9 | 14.4 | 
| FCOS[ | ResNet-50 | 12.6 | 30.4 | 8.1 | 2.3 | 12.2 | 17.2 | 25.0 | 
| FoveaBox[ | ResNet-50 | 8.1 | 19.8 | 5.1 | 0.9 | 5.8 | 13.4 | 15.9 | 
| PAA[ | ResNet-50 | 10.0 | 26.5 | 6.7 | 3.5 | 10.5 | 13.1 | 22.1 | 
| ATSS[ | ResNet-50 | 12.8 | 30.6 | 8.5 | 1.9 | 11.6 | 19.5 | 29.2 | 
| OTA[ | ResNet-50 | 10.4 | 24.3 | 7.2 | 2.5 | 11.9 | 15.7 | 20.9 | 
| AutoAssign[ | ResNet-50 | 12.2 | 32.0 | 6.8 | 3.4 | 13.7 | 16.0 | 19.1 | 
| GFL[ | ResNet-50 | 11.1 | 25.1 | 8.2 | 2.3 | 11.9 | 14.6 | 23.0 | 
| TridentNet[ | ResNet-50 | 7.5 | 20.9 | 3.6 | 1.0 | 5.8 | 12.6 | 14.0 | 
| 本文算法 | RLANet-50 | 14.9 | 36.5 | 9.8 | 4.4 | 16.3 | 18.8 | 22.9 | 
表1 不同检测算法在AI-TOD数据集的检测结果对比 ( %)
Tab. 1 Comparison of detection results of different detection algorithms on AI-TOD dataset
| 算法 | 主干 | mAP | ||||||
|---|---|---|---|---|---|---|---|---|
| 文献[ | RLANet-50 | 11.1 | 25.8 | 8.1 | 2.6 | 12.0 | 14.9 | 21.6 | 
| VFNet[ | ResNet-50 | 10.2 | 23.5 | 7.2 | 2.3 | 11.0 | 13.3 | 19.8 | 
| Faster R-CNN[ | ResNet-50 | 11.1 | 26.3 | 7.6 | 0.0 | 7.2 | 23.3 | 33.6 | 
| Cascade R-CNN[ | ResNet-50 | 13.8 | 30.8 | 10.5 | 0.0 | 10.6 | 25.5 | 36.6 | 
| SSD[ | ResNet-50 | 7.0 | 21.7 | 2.8 | 1.0 | 4.7 | 11.5 | 13.5 | 
| RetinaNet[ | ResNet-50 | 8.7 | 22.3 | 4.8 | 2.4 | 8.9 | 12.2 | 16.0 | 
| RepPonits[ | ResNet-50 | 9.2 | 23.6 | 5.3 | 2.5 | 9.2 | 12.9 | 14.4 | 
| FCOS[ | ResNet-50 | 12.6 | 30.4 | 8.1 | 2.3 | 12.2 | 17.2 | 25.0 | 
| FoveaBox[ | ResNet-50 | 8.1 | 19.8 | 5.1 | 0.9 | 5.8 | 13.4 | 15.9 | 
| PAA[ | ResNet-50 | 10.0 | 26.5 | 6.7 | 3.5 | 10.5 | 13.1 | 22.1 | 
| ATSS[ | ResNet-50 | 12.8 | 30.6 | 8.5 | 1.9 | 11.6 | 19.5 | 29.2 | 
| OTA[ | ResNet-50 | 10.4 | 24.3 | 7.2 | 2.5 | 11.9 | 15.7 | 20.9 | 
| AutoAssign[ | ResNet-50 | 12.2 | 32.0 | 6.8 | 3.4 | 13.7 | 16.0 | 19.1 | 
| GFL[ | ResNet-50 | 11.1 | 25.1 | 8.2 | 2.3 | 11.9 | 14.6 | 23.0 | 
| TridentNet[ | ResNet-50 | 7.5 | 20.9 | 3.6 | 1.0 | 5.8 | 12.6 | 14.0 | 
| 本文算法 | RLANet-50 | 14.9 | 36.5 | 9.8 | 4.4 | 16.3 | 18.8 | 22.9 | 
| 算法 | mAP | |||
|---|---|---|---|---|
| VFNet[ | 13.5 | 32.1 | 2.6 | 12.3 | 
| RetinaNet[ | 8.9 | 24.2 | 2.7 | 8.4 | 
| FCOS[ | 12.0 | 30.2 | 2.2 | 11.1 | 
| 本文算法 | 15.4 | 37.4 | 4.4 | 15.8 | 
表2 不同检测算法在AI-TODv2数据集的检测结果对比 ( %)
Tab. 2 Comparison of detection results of different detection algorithms on AI-TODv2 dataset
| 算法 | mAP | |||
|---|---|---|---|---|
| VFNet[ | 13.5 | 32.1 | 2.6 | 12.3 | 
| RetinaNet[ | 8.9 | 24.2 | 2.7 | 8.4 | 
| FCOS[ | 12.0 | 30.2 | 2.2 | 11.1 | 
| 本文算法 | 15.4 | 37.4 | 4.4 | 15.8 | 
| 算法 | mAP | |||
|---|---|---|---|---|
| VFNet[ | 23.4 | 38.2 | 1.7 | 7.1 | 
| RetinaNet[ | 17.4 | 29.4 | 0.8 | 2.5 | 
| FCOS[ | 14.1 | 25.5 | 0.1 | 2.1 | 
| 本文算法 | 25.0 | 44.4 | 2.8 | 10.3 | 
表3 不同检测算法在VisDrone2019数据集的检测结果对比
Tab. 3 Comparison of detection results of different detection algorithms on VisDrone2019 dataset
| 算法 | mAP | |||
|---|---|---|---|---|
| VFNet[ | 23.4 | 38.2 | 1.7 | 7.1 | 
| RetinaNet[ | 17.4 | 29.4 | 0.8 | 2.5 | 
| FCOS[ | 14.1 | 25.5 | 0.1 | 2.1 | 
| 本文算法 | 25.0 | 44.4 | 2.8 | 10.3 | 
| 主干 | FEM | 标签分配 | Wasserstein损失 | mAP | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| ResNet-50 | 10.2 | 23.5 | 7.2 | 2.3 | 11.0 | 13.3 | 19.8 | |||
| √ | 11.2 | 26.3 | 7.7 | 2.5 | 12.2 | 14.6 | 21.1 | |||
| √ | 12.7 | 29.5 | 9.2 | 4.1 | 14.3 | 14.7 | 19.5 | |||
| √ | 10.7 | 25.8 | 7.0 | 2.4 | 11.5 | 14.8 | 21.2 | |||
| √ | √ | √ | 13.7 | 33.2 | 9.0 | 4.0 | 15.2 | 16.8 | 21.7 | |
| RLANet-50 | 12.3 | 29.3 | 8.2 | 2.8 | 13.1 | 16.8 | 23.4 | |||
| √ | 11.9 | 28.5 | 8.2 | 2.7 | 12.9 | 16.1 | 22.7 | |||
| √ | 14.1 | 33.8 | 9.7 | 5.1 | 15.6 | 17.9 | 22.1 | |||
| √ | 11.2 | 27.3 | 7.3 | 2.5 | 11.7 | 15.9 | 24.3 | |||
| √ | √ | √ | 14.9 | 36.5 | 9.8 | 4.4 | 16.3 | 18.8 | 22.9 | 
表4 消融实验结果 ( %)
Tab. 4 Ablation experiment results
| 主干 | FEM | 标签分配 | Wasserstein损失 | mAP | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| ResNet-50 | 10.2 | 23.5 | 7.2 | 2.3 | 11.0 | 13.3 | 19.8 | |||
| √ | 11.2 | 26.3 | 7.7 | 2.5 | 12.2 | 14.6 | 21.1 | |||
| √ | 12.7 | 29.5 | 9.2 | 4.1 | 14.3 | 14.7 | 19.5 | |||
| √ | 10.7 | 25.8 | 7.0 | 2.4 | 11.5 | 14.8 | 21.2 | |||
| √ | √ | √ | 13.7 | 33.2 | 9.0 | 4.0 | 15.2 | 16.8 | 21.7 | |
| RLANet-50 | 12.3 | 29.3 | 8.2 | 2.8 | 13.1 | 16.8 | 23.4 | |||
| √ | 11.9 | 28.5 | 8.2 | 2.7 | 12.9 | 16.1 | 22.7 | |||
| √ | 14.1 | 33.8 | 9.7 | 5.1 | 15.6 | 17.9 | 22.1 | |||
| √ | 11.2 | 27.3 | 7.3 | 2.5 | 11.7 | 15.9 | 24.3 | |||
| √ | √ | √ | 14.9 | 36.5 | 9.8 | 4.4 | 16.3 | 18.8 | 22.9 | 
| 1 | WANG J, YANG W, GUO H, et al. Tiny object detection in aerial images [C]// Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 3791-3798. | 
| 2 | LIU L, OUYANG W, WANG X, et al. Deep learning for generic object detection: a survey [J]. International Journal of Computer Vision, 2020, 128: 261-318. | 
| 3 | LIU Y, SUN P, WERGELES N, et al. A survey and performance evaluation of deep learning methods for small object detection [J]. Expert Systems with Applications, 2021, 172: 114602. | 
| 4 | 姬张建,张明,王子龙.基于改进VarifocalNet的高精度目标检测算法[J].计算机应用, 2023, 43(7): 2147-2154. | 
| JI Z J, ZHANG M, WANG Z L. High-precision object detection algorithm based on improved VarifocalNet [J]. Journal of Computer Applications, 2023, 43(7): 2147-2154. | |
| 5 | ZHAO J, FANG Y, LI G. Recurrence along depth: deep convolutional neural networks with recurrent layer aggregation [C]// Proceedings of the 35th Conference on Neural Information Processing Systems. New York: ACM, 2021: 10627-10640. | 
| 6 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
| 7 | LIN T-Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. | 
| 8 | GUO C, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12592-12601. | 
| 9 | YU J, JIANG Y, WANG Z, et al. UnitBox: an advanced object detection network [C]// Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520. | 
| 10 | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666. | 
| 11 | ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. | 
| 12 | XU C, WANG J, YANG W, et al. Dot distance for tiny object detection in aerial images [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1192-1201. | 
| 13 | ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8510-8519. | 
| 14 | XU C, WANG J, YANG W, et al. RFLA: Gaussian receptive field based label assignment for tiny object detection [C]// Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 526-543. | 
| 15 | WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection [EB/OL]. (2021-10-26) [2023-07-01]. . | 
| 16 | REN S, HE K GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. | 
| 17 | CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. | 
| 18 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. | 
| 19 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. | 
| 20 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. | 
| 21 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2023-07-01]. . | 
| 22 | BOCHKOVSKIY A, WANG C-Y, LIAO H-Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2023-07-01]. . | 
| 23 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. | 
| 24 | LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. | 
| 25 | LAW H, DENG J. CornerNet: detecting objects as paired keypoints [C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 765-781. | 
| 26 | YANG Z, LIU S, HU H, et al. RepPoints: point set representation for object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9656-9665. | 
| 27 | ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points [EB/OL]. (2019-04-16) [2023-07-01]. . | 
| 28 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. | 
| 29 | KONG T, SUN F, LIU H, et al. FoveaBox: beyound anchor-based object detection [J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. | 
| 30 | DENG J, GUO J, VERVERAS E, et al. RetinaFace: single-shot multi-level face localisation in the wild [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5202-5211. | 
| 31 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. | 
| 32 | WANG M, YANG W, WANG L, et al. FE-YOLOv5: feature enhancement network based on YOLOv5 for small object detection [J]. Journal of Visual Communication and Image Representation, 2023, 90: 103752. | 
| 33 | HONG M, LI S, YANG Y, et al. SSPNet: scale selection pyramid network for tiny person detection from UAV images [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8018505. | 
| 34 | HU H, GU J, ZHANG Z, et al. Relation networks for object detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3588-3597. | 
| 35 | J-S LIM, ASTRID M, H-J YOON, et al. Small object detection using context and attention [C]// Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186. | 
| 36 | SINGH B, DAVIS L S. An analysis of scale invariance in object detection: SNIP [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3578-3587. | 
| 37 | YU X, GONG Y, JIANG N, et al. Scale match for tiny person detection [C]// Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1246-1254. | 
| 38 | LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1951-1959. | 
| 39 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. | 
| 40 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2014-09-04) [2023-07-01]. . | 
| 41 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. | 
| 42 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers [C]// Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. | 
| 43 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. | 
| 44 | KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection [C]// Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 355-371. | 
| 45 | ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9756-9765. | 
| 46 | GE Z, LIU S, LI Z, et al. OTA: Optimal transport assignment for object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 303-312. | 
| 47 | ZHU B, WANG J, JIANG Z, et al. AutoAssign: differentiable label assignment for dense object detection [EB/OL]. (2020-07-07) [2023-07-01]. . | 
| 48 | ZHANG Z, ZHONG F, QIN X. MFE: multi-scale feature enhancement for object detection [C/OL]// Proceedings of the 32nd British Machine Vision Conference [2023-07-01]. . | 
| 49 | SHEN J, QU Y, ZHANG W, et al. Wasserstein distance guided representation learning for domain adaptation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 4058-4065. | 
| 50 | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge [J]. International Journal of Computer Vision, 2010, 88: 303-338. | 
| 51 | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. | 
| 52 | DING J, XUE N, XIA G-S, et al. Object detection in aerial images: a large-scale benchmark and challenges [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7778-7796. | 
| 53 | XU C, WANG J, YANG W, et al. Detecting tiny objects in aerial images: a normalized Wasserstein distance and a new benchmark [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 79-93. | 
| 54 | DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 213-226. | 
| 55 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge [J]. International Journal of Computer Vision, 2015, 115(3): 211-252. | 
| 56 | LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020, 33: 21002-21012. | 
| 57 | LI Y, CHEN Y, WANG N, et al. Scale-aware trident networks for object detection [C]// Proceedings of the IEEE/CVF 2019 International Conference on Computer Vision. Piscataway: IEEE, 2019: 6053-6062. | 
| [1] | 赵奎, 仇慧琪, 李旭, 徐知非. 结合注意力和多路径融合的实时肺结节检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 945-952. | 
| [2] | 王呈, 王炀, 荣英佼. 面向配电柜字符识别的YOLOv7-MSBP目标定位算法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3191-3199. | 
| [3] | 王宏, 钱清, 王欢, 龙永. 融合大核注意力卷积的轻量化图像篡改定位算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2692-2699. | 
| [4] | 杨昊, 张轶. 基于上下文信息和多尺度融合重要性感知的特征金字塔网络算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2727-2734. | 
| [5] | 姬张建, 张明, 王子龙. 基于改进VarifocalNet的高精度目标检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2147-2154. | 
| [6] | 秦源源, 张鸿. 基于注意力特征金字塔网络的肺结节检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2311-2318. | 
| [7] | 方可, 刘蓉, 魏驰宇, 张心月, 刘杨. 复杂场景下的行人跌倒检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1811-1817. | 
| [8] | 申利华, 李波. 基于特征金字塔网络和密集网络的肺部CT图像超分辨率重建[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1612-1619. | 
| [9] | 沈万里, 张玉金, 胡万. 面向图像修复取证的U型特征金字塔网络[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 545-551. | 
| [10] | 郭子豪, 董乐乐, 曲志坚. 基于改进Faster RCNN的节肢动物目标检测方法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 88-97. | 
| [11] | 吕玉超, 姜茜, 徐英豪, 朱习军. 基于多尺度特征融合的改进臂丛神经分割方法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 273-279. | 
| [12] | 邹斌, 张聪. 基于Faster R-CNN的密集人群检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 61-66. | 
| [13] | 王佑芯, 陈斌. 基于深度对比网络的印刷缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 250-258. | 
| [14] | 尹靖涵, 瞿绍军, 姚泽楷, 胡玄烨, 秦晓雨, 华璞靖. 基于YOLOv5的雾霾天气下交通标志识别模型[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2876-2884. | 
| [15] | 李姚舜, 刘黎志. 嵌入注意力机制的轻量级钢筋检测网络[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2900-2908. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
