| 1 | LIN B Y, HE C, ZENG Z, et al. FedNLP: benchmarking federated learning methods for natural language processing tasks[C]// Findings of the Association for Computational Linguistics: NAACL 2022. Stroudsburg, PA: ACL, 2022: 157-175. | 
																													
																						| 2 | 刘晶,董志红,张喆语,等. 基于联邦增量学习的工业物联网数据共享方法[J]. 计算机应用, 2022,42(4):1235-1243. | 
																													
																						|  | LIU J, DONG Z H, ZHANG Z Y, et al. Data sharing method of industrial internet of things based on federal incremental learning [J]. Journal of Computer Applications, 2022, 42(4): 1235-1243. | 
																													
																						| 3 | 罗长银,陈学斌,马春地,等. 面向区块链的在线联邦增量学习算法[J]. 计算机应用, 2021, 41(2):363-371. | 
																													
																						|  | LUO C Y, CHEN X B, MA C D, et al. Online federated incremental learning algorithm for blockchain[J]. Journal of Computer Applications, 2021, 41(2): 363-371. | 
																													
																						| 4 | 王腾,霍峥,黄亚鑫,等.联邦学习中的隐私保护技术研究综述[J]. 计算机应用, 2023, 43(2):437-449. | 
																													
																						|  | WANG T, HUO Z, HUANG Y X, et al. Review on privacy-preserving technologies in federated learning [J]. Journal of Computer Applications, 2023, 43(2): 437-449. | 
																													
																						| 5 | 尹春勇,屈锐. 基于个性化差分隐私的联邦学习算法[J]. 计算机应用, 2023, 43(4):1160-1168. | 
																													
																						|  | YIN C Y, QU R. Federated learning algorithm based on personalized differential privacy [J]. Journal of Computer Applications, 2023, 43(4): 1160-1168. | 
																													
																						| 6 | MA X, ZHU J, LIN Z, et al. A state-of-the-art survey on solving non-IID data in federated learning [J]. Future Generation Computer Systems, 2022, 135: 244-258. | 
																													
																						| 7 | LU W, HU X, WANG J, et al. FedCLIP: fast generalization and personalization for clip in federated learning [EB/OL]. [2024-04-11].. | 
																													
																						| 8 | WANG Y, GAN W, YANG J, et al. Dynamic curriculum learning for imbalanced data classification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5016-5025. | 
																													
																						| 9 | PENG B, CHI M, LIU C. Non-IID federated learning via random exchange of local feature maps for textile IIoT secure computing [J]. SCIENCE CHINA Information Sciences, 2022, 65(7): No.170302. | 
																													
																						| 10 | 梁天恺,曾碧,陈光. 联邦学习综述:概念、技术、应用与挑战[J]. 计算机应用, 2022, 42(12):3651-3662. | 
																													
																						|  | LIANG T K, ZENG B, CHEN G. Federated learning survey: concepts, technologies, applications and challenges[J]. Journal of Computer Applications, 2022, 42(12): 3651-3662. | 
																													
																						| 11 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. | 
																													
																						| 12 | KAIROUZ P, McMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends® in Machine Learning, 2021, 14(1/2): 1-210. | 
																													
																						| 13 | 汤凌韬,王迪,刘盛云. 面向非独立同分布数据的联邦学习数据增强方案[J]. 通信学报, 2023, 44(1):164-176. | 
																													
																						|  | TANG L T, WANG D, LIU S Y. Data augmentation scheme for federated learning with non-IID data[J]. Journal on Communications, 2023, 44(1): 164-176. | 
																													
																						| 14 | ZHAO Y, LI M, LAI L, et al. Federated learning with non-IID data [EB/OL].[2024-04-08].. | 
																													
																						| 15 | 蓝梦婕,蔡剑平,孙岚. 非独立同分布数据下的自正则化联邦学习优化方法[J]. 计算机应用, 2023, 43(7):2073-2081. | 
																													
																						|  | LAN M J, CAI J P, SUN L. Self-regularization optimization methods for Non-IID data in federated learning [J]. Journal of Computer Applications, 2023, 43(7):2073-2081. | 
																													
																						| 16 | 张泽辉,李庆丹,富瑶,等. 面向非独立同分布数据的自适应联邦深度学习算法[J]. 自动化学报, 2023, 49(12):2493-2506. | 
																													
																						|  | ZHANG Z H, LI Q D, FU Y, et al. Adaptive federated deep learning with non-IID data [J]. Acta Automatica Sinica, 2023, 49(12): 2493-2506. | 
																													
																						| 17 | ZENG D, HU X, LIU S, et al. Stochastic clustered federated learning[EB/OL]. [2024-04-08].. | 
																													
																						| 18 | LIU T, DING J, WANG T, et al. Towards fast and accurate federated learning with non-IID data for cloud-based IoT applications[J]. Journal of Circuits, Systems and Computers, 2022, 31(13): No.2250235. | 
																													
																						| 19 | 陈学斌,任志强,张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 计算机应用, 2024, 44(6):1663-1672. | 
																													
																						|  | CHEN X B, REN Z Q, ZHANG H Y. Review on security threats and defense measures in federated learning[J]. Journal of Computer Applications, 2024, 44(6):1663-1672. | 
																													
																						| 20 | ZHANG L, SHEN B, BARNAWI A, et al. FedDPGAN: federated differentially private generative adversarial networks framework for the detection of COVID-19 pneumonia[J]. Information Systems Frontiers, 2021, 23(6): 1403-1415. | 
																													
																						| 21 | YUAN L, SU L, WANG Z. Federated transfer-ordered-personalized learning for driver monitoring application [J]. IEEE Internet of Things Journal, 2023, 10(20): 18292-18301. | 
																													
																						| 22 | WANG H, KAPLAN Z, NIU D, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]// Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 1698-1707. | 
																													
																						| 23 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[EB/OL]. [2024-04-13].. |