《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (5): 1378-1385.DOI: 10.11772/j.issn.1001-9081.2024010113
所属专题: 进化计算专题(2024年第5期“进化计算专题”导读,全文已上线)
收稿日期:
2024-01-31
接受日期:
2024-02-21
发布日期:
2024-04-26
出版日期:
2024-05-10
通讯作者:
刘晟材
作者简介:
李炫锋(1995—),男,广西钦州人,博士研究生,主要研究方向:机会约束优化基金资助:
Xuanfeng LI1,2, Shengcai LIU1(), Ke TANG1,2
Received:
2024-01-31
Accepted:
2024-02-21
Online:
2024-04-26
Published:
2024-05-10
Contact:
Shengcai LIU
About author:
LI Xuanfeng, born in 1995, Ph. D. candidate. His research interests include chance-constrained optimization.Supported by:
摘要:
机会约束的多选择背包问题(CCMCKP)是一类具有重要应用价值的NP难组合优化问题,但目前还缺乏关于该问题求解方法的专门研究。为此,提出首个CCMCKP的求解框架,并基于该框架构建了两种求解方法:基于动态规划的RA-DP和基于遗传算法的RA-IGA。RA-DP是精确求解方法,具有最优性保证,但是在可接受的时间(1 h)内仅能求解小规模问题样例;相较而言,RA-IGA是近似求解方法,具有更好的可扩放性。仿真实验结果验证了所提求解方法的性能:在小规模问题样例上,RA-DP和RA-IGA都可以找到最优解;在中大规模问题样例上,RA-IGA表现出了比RA-DP显著更高的求解效率,它总是可以在给定时间(1 h)内快速获得可行解。在CCMCKP的后续研究中,RA?DP和RA-IGA可作为基准对比方法,而实验工作中所构建的测试样例集可作为该问题的标准测试集。
中图分类号:
李炫锋, 刘晟材, 唐珂. 机会约束的多选择背包问题的遗传算法求解[J]. 计算机应用, 2024, 44(5): 1378-1385.
Xuanfeng LI, Shengcai LIU, Ke TANG. Novel genetic algorithm for solving chance-constrained multiple-choice Knapsack problems[J]. Journal of Computer Applications, 2024, 44(5): 1378-1385.
样例 | W | Brute-force | RA-DP | RA-IGA | |||||
---|---|---|---|---|---|---|---|---|---|
Cost | Cost | Runtime | RA times | Cost | Runtime | RA times | |||
小 规 模 | m=3, N=3 | 6 210.8 | 252.944 3 | 252.944 3(0) | 3(0) | 252.944 3(0) | 4.440 889(0) | 3.0(0) | |
m=3, N=5 | 4 919.9 | 285.937 8 | 285.937 8(0) | 3(0) | 285.937 8(0) | 4.601 127(0) | 3.0(0) | ||
m=3, N=10 | 3 646.8 | 211.918 6 | 211.918 6(0) | 1(0) | 211.918 6(0) | 1.831 504(0) | 1.0(0) | ||
m=3, N=20 | 3 812.9 | 281.236 6 | 281.236 6(0) | 3(0) | 281.236 6(0) | 7.465 148(0) | 3.0(0) | ||
m=5, N=3 | 8 315.3 | 572.689 9 | 572.689 9(0) | 4(0) | 572.689 9(0) | 7.188 246(0) | 4.0(0) | ||
m=5, N=5 | 7 629.6 | 408.884 2 | 408.884 2(0) | 7(0) | 408.884 2(5.7) | 12.540 500(0) | 7.0(0) | ||
m=5, N=10 | 6 743.0 | 380.126 0 | 380.126 0(0) | 3(0) | 380.126 0(0) | 6.170 371(0) | 3.0(0) | ||
m=5, N=20 | 6 070.4 | 311.030 7 | 311.030 7(0) | 3(0) | 311.030 7(0) | 9.147 092(0) | 3.0(0) | ||
中 规 模 | m=10, N=3 | 19 094.4 | 936.723 5 | 936.723 5(0) | 3(0) | 936.723 5(0) | 15.158 180(0) | 3.0(0) | |
m=10, N=5 | 16 431.4 | 749.652 8 | 749.652 8(0) | 3(0) | 749.652 8(0) | 15.840 780(0) | 3.0(0) | ||
m=10, N=10 | 13 278.5 | — | 778.559 2(0) | 3(0) | 778.559 2(0) | 20.257 980(0) | 3.0(0) | ||
m=10, N=20 | 11 807.6 | — | 648.779 7(0) | 8(0) | 653.021 4(0.079) | 64.724 050(0) | 7.0(1.55) | ||
m=20, N=3 | 33 404.2 | — | 1 560.820 0(0) | 3(0) | 1 560.820 0(0) | 19.851 520(0) | 3.0(0) | ||
m=20, N=5 | 30 608.0 | — | 1 647.302 0(0) | 3(0) | 1 647.302 0(0) | 30.879 680(0) | 3.8(0.4) | ||
m=20, N=10 | 26 362.0 | — | 1 400.262 0(0) | 927.749 000(1.227) | 4(0) | 1 400.250 0(2.81) | 3.0(0) | ||
m=20, N=20 | 24 027.1 | — | — | — | — | 1 249.669 0(4.33) | 3.0(0) | ||
m=30, N=10 | 37 851.2 | — | — | — | — | 2 205.289 0(2.98) | 3.2(0.4) | ||
m=30, N=20 | 36 520.4 | — | — | — | — | 1 755.243 0(1.47) | 3.2(0.4) | ||
m=50, N=10 | 63 168.1 | — | — | — | — | 3 276.099 0(1.56) | 5.0(0.49) | ||
m=50, N=20 | 58 517.1 | — | — | — | — | 3 138.925 0(1.72) | 3.6(0.49) | ||
大 规 模 | m=100, N=10 | 122 523.6 | — | — | — | — | 6 908.194 0(2.53) | 4.6(1.02) | |
m=100, N=20 | 114 579.3 | — | — | — | — | 6 458.782 0(9.67) | 3.6(0.5) | ||
m=100, N=50 | 110 990.4 | — | — | — | — | 5 566.828 0(5.35) | 3.2(0.4) |
表1 高约束强度CCMCKP样例集上RA-DP和RA-IGA的测试结果
Tab.1 Comparisons of RA-DP and RA-IGA on high constraint strength of CCMCKP instances
样例 | W | Brute-force | RA-DP | RA-IGA | |||||
---|---|---|---|---|---|---|---|---|---|
Cost | Cost | Runtime | RA times | Cost | Runtime | RA times | |||
小 规 模 | m=3, N=3 | 6 210.8 | 252.944 3 | 252.944 3(0) | 3(0) | 252.944 3(0) | 4.440 889(0) | 3.0(0) | |
m=3, N=5 | 4 919.9 | 285.937 8 | 285.937 8(0) | 3(0) | 285.937 8(0) | 4.601 127(0) | 3.0(0) | ||
m=3, N=10 | 3 646.8 | 211.918 6 | 211.918 6(0) | 1(0) | 211.918 6(0) | 1.831 504(0) | 1.0(0) | ||
m=3, N=20 | 3 812.9 | 281.236 6 | 281.236 6(0) | 3(0) | 281.236 6(0) | 7.465 148(0) | 3.0(0) | ||
m=5, N=3 | 8 315.3 | 572.689 9 | 572.689 9(0) | 4(0) | 572.689 9(0) | 7.188 246(0) | 4.0(0) | ||
m=5, N=5 | 7 629.6 | 408.884 2 | 408.884 2(0) | 7(0) | 408.884 2(5.7) | 12.540 500(0) | 7.0(0) | ||
m=5, N=10 | 6 743.0 | 380.126 0 | 380.126 0(0) | 3(0) | 380.126 0(0) | 6.170 371(0) | 3.0(0) | ||
m=5, N=20 | 6 070.4 | 311.030 7 | 311.030 7(0) | 3(0) | 311.030 7(0) | 9.147 092(0) | 3.0(0) | ||
中 规 模 | m=10, N=3 | 19 094.4 | 936.723 5 | 936.723 5(0) | 3(0) | 936.723 5(0) | 15.158 180(0) | 3.0(0) | |
m=10, N=5 | 16 431.4 | 749.652 8 | 749.652 8(0) | 3(0) | 749.652 8(0) | 15.840 780(0) | 3.0(0) | ||
m=10, N=10 | 13 278.5 | — | 778.559 2(0) | 3(0) | 778.559 2(0) | 20.257 980(0) | 3.0(0) | ||
m=10, N=20 | 11 807.6 | — | 648.779 7(0) | 8(0) | 653.021 4(0.079) | 64.724 050(0) | 7.0(1.55) | ||
m=20, N=3 | 33 404.2 | — | 1 560.820 0(0) | 3(0) | 1 560.820 0(0) | 19.851 520(0) | 3.0(0) | ||
m=20, N=5 | 30 608.0 | — | 1 647.302 0(0) | 3(0) | 1 647.302 0(0) | 30.879 680(0) | 3.8(0.4) | ||
m=20, N=10 | 26 362.0 | — | 1 400.262 0(0) | 927.749 000(1.227) | 4(0) | 1 400.250 0(2.81) | 3.0(0) | ||
m=20, N=20 | 24 027.1 | — | — | — | — | 1 249.669 0(4.33) | 3.0(0) | ||
m=30, N=10 | 37 851.2 | — | — | — | — | 2 205.289 0(2.98) | 3.2(0.4) | ||
m=30, N=20 | 36 520.4 | — | — | — | — | 1 755.243 0(1.47) | 3.2(0.4) | ||
m=50, N=10 | 63 168.1 | — | — | — | — | 3 276.099 0(1.56) | 5.0(0.49) | ||
m=50, N=20 | 58 517.1 | — | — | — | — | 3 138.925 0(1.72) | 3.6(0.49) | ||
大 规 模 | m=100, N=10 | 122 523.6 | — | — | — | — | 6 908.194 0(2.53) | 4.6(1.02) | |
m=100, N=20 | 114 579.3 | — | — | — | — | 6 458.782 0(9.67) | 3.6(0.5) | ||
m=100, N=50 | 110 990.4 | — | — | — | — | 5 566.828 0(5.35) | 3.2(0.4) |
样例 | W | Brute-force | RA-DP | RA-IGA | |||||
---|---|---|---|---|---|---|---|---|---|
Cost | Cost | Runtime | RA times | Cost | Runtime | RA times | |||
小 规 模 | m=3, N=3 | 6 511.6 | 225.402 4 | 225.402 4(0) | 1(0) | 225.402 4(0) | 1.496 704(0.003) | 1.0(0) | |
m=3, N=5 | 5 404.8 | 244.009 6 | 244.009 6(0) | 3(0) | 244.009 6(0) | 4.404 947(0.03) | 3.0(0) | ||
m=3, N=10 | 4 255.6 | 211.918 6 | 211.918 6(0) | 3(0) | 211.918 6(0) | 5.281 897(0.117) | 3.0(0) | ||
m=3, N=20 | 4 457.0 | 232.910 2 | 232.910 2(0) | 3(0) | 232.910 2(0) | 6.587 724(0.012) | 3.0(0) | ||
m=5, N=3 | 8 875.6 | 488.236 7 | 488.236 7(0) | 3(0) | 488.236 7(0) | 4.960 898(0.09) | 3.0(0) | ||
m=5, N=5 | 8 455.2 | 367.126 9 | 367.126 9(0) | 4(0) | 367.126 9(0) | 6.508 796(0.09) | 4.0(0) | ||
m=5, N=10 | 7 742.4 | 316.725 9 | 316.725 9(0) | 3(0) | 316.725 9(0) | 5.719 294(0.115) | 3.0(0) | ||
m=5, N=20 | 7 137.8 | 300.920 7 | 300.920 7(0) | 3(0) | 300.920 7(0) | 7.764 045(0.078) | 3.0(0) | ||
中 规 模 | m=10, N=3 | 20 135.8 | 866.683 9 | 866.683 9(0) | 3(0) | 866.683 9(0) | 13.909 810(0.157) | 3.0(0) | |
m=10, N=5 | 17 953.8 | 716.727 4 | 716.727 4(0) | 3(0) | 716.727 4(3.36) | 14.131 290(0.167) | 3.0(0) | ||
m=10, N=10 | 15 133.0 | — | 698.237 5(0) | 3(0) | 698.237 5(0) | 18.484 650(0.265) | 3.0(0) | ||
m=10, N=20 | 14 023.2 | — | 581.904 3(0) | 3(0) | 581.904 3(0) | 21.694 380(0.369) | 3.0(0) | ||
m=20, N=3 | 35 975.4 | — | 1 474.784 0(0) | 4(0) | 1 478.826 0(0) | 20.743 580(2.802) | 3.4(0) | ||
m=20, N=5 | 33 709.0 | — | 1 480.981 0(0) | 121.308 200(1.19) | 3(0) | 1 487.644 0(3.642) | 3.4(0.49) | ||
m=20, N=10 | 30 172.0 | — | — | — | — | 1 251.546 0(0) | 3.0(0) | ||
m=20, N=20 | 28 366.2 | — | — | — | — | 1 163.822 0(0) | 3.0(0) | ||
m=30, N=10 | 43 617.4 | — | — | — | — | 1 993.904 0(1.048) | 3.8(0.4) | ||
m=30, N=20 | 42 890.8 | — | — | — | — | 1 667.808 0(0.996) | 3.0(0) | ||
m=50, N=10 | 72 851.2 | — | — | — | — | 3 045.043 0(1.872) | 3.4(0.49) | ||
m=50, N=20 | 69 339.2 | — | — | — | — | 2 917.159 0(2.487) | 3.4(0.49) | ||
大 规 模 | m=100, N=10 | 141 964.2 | — | — | — | — | 6 241.125 0(6.52) | 3.2(0.4) | |
m=100, N=20 | 136 463.6 | — | — | — | — | 5 881.865 0(17.86) | 3.0(0) | ||
m=100, N=50 | 133 984.8 | — | — | — | — | 5 363.524 0(5.97) | 3.0(0) |
表2 中约束强度CCMCKP样例集上RA-DP和RA-IGA的测试结果
Tab.2 Comparisons of RA-DP and RA-IGA on medium constraint strength of CCMCKP instances
样例 | W | Brute-force | RA-DP | RA-IGA | |||||
---|---|---|---|---|---|---|---|---|---|
Cost | Cost | Runtime | RA times | Cost | Runtime | RA times | |||
小 规 模 | m=3, N=3 | 6 511.6 | 225.402 4 | 225.402 4(0) | 1(0) | 225.402 4(0) | 1.496 704(0.003) | 1.0(0) | |
m=3, N=5 | 5 404.8 | 244.009 6 | 244.009 6(0) | 3(0) | 244.009 6(0) | 4.404 947(0.03) | 3.0(0) | ||
m=3, N=10 | 4 255.6 | 211.918 6 | 211.918 6(0) | 3(0) | 211.918 6(0) | 5.281 897(0.117) | 3.0(0) | ||
m=3, N=20 | 4 457.0 | 232.910 2 | 232.910 2(0) | 3(0) | 232.910 2(0) | 6.587 724(0.012) | 3.0(0) | ||
m=5, N=3 | 8 875.6 | 488.236 7 | 488.236 7(0) | 3(0) | 488.236 7(0) | 4.960 898(0.09) | 3.0(0) | ||
m=5, N=5 | 8 455.2 | 367.126 9 | 367.126 9(0) | 4(0) | 367.126 9(0) | 6.508 796(0.09) | 4.0(0) | ||
m=5, N=10 | 7 742.4 | 316.725 9 | 316.725 9(0) | 3(0) | 316.725 9(0) | 5.719 294(0.115) | 3.0(0) | ||
m=5, N=20 | 7 137.8 | 300.920 7 | 300.920 7(0) | 3(0) | 300.920 7(0) | 7.764 045(0.078) | 3.0(0) | ||
中 规 模 | m=10, N=3 | 20 135.8 | 866.683 9 | 866.683 9(0) | 3(0) | 866.683 9(0) | 13.909 810(0.157) | 3.0(0) | |
m=10, N=5 | 17 953.8 | 716.727 4 | 716.727 4(0) | 3(0) | 716.727 4(3.36) | 14.131 290(0.167) | 3.0(0) | ||
m=10, N=10 | 15 133.0 | — | 698.237 5(0) | 3(0) | 698.237 5(0) | 18.484 650(0.265) | 3.0(0) | ||
m=10, N=20 | 14 023.2 | — | 581.904 3(0) | 3(0) | 581.904 3(0) | 21.694 380(0.369) | 3.0(0) | ||
m=20, N=3 | 35 975.4 | — | 1 474.784 0(0) | 4(0) | 1 478.826 0(0) | 20.743 580(2.802) | 3.4(0) | ||
m=20, N=5 | 33 709.0 | — | 1 480.981 0(0) | 121.308 200(1.19) | 3(0) | 1 487.644 0(3.642) | 3.4(0.49) | ||
m=20, N=10 | 30 172.0 | — | — | — | — | 1 251.546 0(0) | 3.0(0) | ||
m=20, N=20 | 28 366.2 | — | — | — | — | 1 163.822 0(0) | 3.0(0) | ||
m=30, N=10 | 43 617.4 | — | — | — | — | 1 993.904 0(1.048) | 3.8(0.4) | ||
m=30, N=20 | 42 890.8 | — | — | — | — | 1 667.808 0(0.996) | 3.0(0) | ||
m=50, N=10 | 72 851.2 | — | — | — | — | 3 045.043 0(1.872) | 3.4(0.49) | ||
m=50, N=20 | 69 339.2 | — | — | — | — | 2 917.159 0(2.487) | 3.4(0.49) | ||
大 规 模 | m=100, N=10 | 141 964.2 | — | — | — | — | 6 241.125 0(6.52) | 3.2(0.4) | |
m=100, N=20 | 136 463.6 | — | — | — | — | 5 881.865 0(17.86) | 3.0(0) | ||
m=100, N=50 | 133 984.8 | — | — | — | — | 5 363.524 0(5.97) | 3.0(0) |
样例 | W | Brute-force | RA-DP | RA-IGA | |||||
---|---|---|---|---|---|---|---|---|---|
Cost | Cost | Runtime | RA times | Cost | Runtime | RA times | |||
小 规 模 | m=3,N=3 | 6 210.8 | 225.402 361 | 225.402 4(0) | 3(0) | 225.402 4(0) | 4.061 699(0.12) | 3(0) | |
m=3,N=5 | 4 919.9 | 213.812 352 | 213.812 4(0) | 1(0) | 213.812 4(0) | 1.334 633(0.01) | 1(0) | ||
m=3, N=10 | 3 646.8 | 167.374 351 | 167.374 4(0) | 3(0) | 167.374 4(0) | 4.388 657(0.197) | 3(0) | ||
m=3,N=20 | 3 812.9 | 197.276 079 | 197.276 1(0) | 3(0) | 197.276 1(0) | 4.097 674(0.04) | 3(0) | ||
m=5,N=3 | 8 315.3 | 337.421 212 | 337.421 2(0) | 3(0) | 337.421 2(0) | 3.957 431(0.049) | 3(0) | ||
m=5, N=5 | 7 629.6 | 325.310 233 | 325.310 2(0) | 1(0) | 325.310 2(0) | 1.350 837(0.051) | 1(0) | ||
m=5,N=10 | 6 743.0 | 304.449 708 | 304.449 7(0) | 1(0) | 304.449 7(0) | 1.400 598(0.055) | 1(0) | ||
m=5,N=20 | 6 070.4 | 289.356 396 | 289.356 4(0) | 1(0) | 289.356 4(0) | 1.524 389(0.044) | 1(0) | ||
中 规 模 | m=10,N=3 | 19 094.4 | 768.379 257 | 768.379 3(0) | 3(0) | 768.379 3(0) | 12.853 330(0.446) | 3(0) | |
m=10,N=5 | 16 431.4 | 626.774 623 | 626.774 6(0) | 3(0) | 626.774 6(0) | 12.707 540(1.095) | 3(0) | ||
m=10,N=10 | 13 278.5 | — | 615.346 8(0) | 3(0) | 615.346 8(0) | 13.945 870(0.39) | 3(0) | ||
m=10,N=20 | 11 807.6 | — | 537.386 5(0) | 1(0) | 537.386 5(0) | 4.520 560(0.077) | 1(0) | ||
m=20,N=3 | 33 404.2 | — | 1 362.727 0(0) | 1(0) | 1 362.727 0(0) | 4.632 803(0.06) | 1(0) | ||
m=20,N=5 | 30 608.0 | — | 1 293.604 0(0) | 647.675 000(19.89) | 3(0) | 1 293.604 0(0) | 14.596 230(0.119) | 3(0) | |
m=20,N=10 | 26 362.0 | — | — | — | — | 1 139.965 0(2.78) | 3(0) | ||
m=20,N=20 | 24 027.1 | — | — | — | — | 1 098.458 0(0) | 1(0) | ||
m=30,N=10 | 37 851.2 | — | — | — | — | 1 793.509 0(0.75) | 3(0) | ||
m=30,N=20 | 36 520.4 | — | — | — | — | 1 620.478 0(1.63) | 3(0) | ||
m=50,N=10 | 63 168.1 | — | — | — | — | 2 871.462 0(0) | 1(0) | ||
m=50,N=20 | 58 517.1 | — | — | — | — | 2 718.846 0(0.407) | 3(0) | ||
大 规 模 | m=100,N=10 | 122 523.6 | — | — | — | — | 5 768.800 0(0) | 1(0) | |
m=100,N=20 | 114 579.3 | — | — | — | — | 5 448.920 0(0.33) | 3(0) | ||
m=100,N=50 | 110 990.4 | — | — | — | — | 5 205.552 0(2.689) | 1(0) |
表3 低约束强度CCMCKP样例集上RA-DP和RA-IGA的测试结果
Tab.3 Comparisons of RA-DP and RA-IGA on low constraint strength of CCMCKP instances
样例 | W | Brute-force | RA-DP | RA-IGA | |||||
---|---|---|---|---|---|---|---|---|---|
Cost | Cost | Runtime | RA times | Cost | Runtime | RA times | |||
小 规 模 | m=3,N=3 | 6 210.8 | 225.402 361 | 225.402 4(0) | 3(0) | 225.402 4(0) | 4.061 699(0.12) | 3(0) | |
m=3,N=5 | 4 919.9 | 213.812 352 | 213.812 4(0) | 1(0) | 213.812 4(0) | 1.334 633(0.01) | 1(0) | ||
m=3, N=10 | 3 646.8 | 167.374 351 | 167.374 4(0) | 3(0) | 167.374 4(0) | 4.388 657(0.197) | 3(0) | ||
m=3,N=20 | 3 812.9 | 197.276 079 | 197.276 1(0) | 3(0) | 197.276 1(0) | 4.097 674(0.04) | 3(0) | ||
m=5,N=3 | 8 315.3 | 337.421 212 | 337.421 2(0) | 3(0) | 337.421 2(0) | 3.957 431(0.049) | 3(0) | ||
m=5, N=5 | 7 629.6 | 325.310 233 | 325.310 2(0) | 1(0) | 325.310 2(0) | 1.350 837(0.051) | 1(0) | ||
m=5,N=10 | 6 743.0 | 304.449 708 | 304.449 7(0) | 1(0) | 304.449 7(0) | 1.400 598(0.055) | 1(0) | ||
m=5,N=20 | 6 070.4 | 289.356 396 | 289.356 4(0) | 1(0) | 289.356 4(0) | 1.524 389(0.044) | 1(0) | ||
中 规 模 | m=10,N=3 | 19 094.4 | 768.379 257 | 768.379 3(0) | 3(0) | 768.379 3(0) | 12.853 330(0.446) | 3(0) | |
m=10,N=5 | 16 431.4 | 626.774 623 | 626.774 6(0) | 3(0) | 626.774 6(0) | 12.707 540(1.095) | 3(0) | ||
m=10,N=10 | 13 278.5 | — | 615.346 8(0) | 3(0) | 615.346 8(0) | 13.945 870(0.39) | 3(0) | ||
m=10,N=20 | 11 807.6 | — | 537.386 5(0) | 1(0) | 537.386 5(0) | 4.520 560(0.077) | 1(0) | ||
m=20,N=3 | 33 404.2 | — | 1 362.727 0(0) | 1(0) | 1 362.727 0(0) | 4.632 803(0.06) | 1(0) | ||
m=20,N=5 | 30 608.0 | — | 1 293.604 0(0) | 647.675 000(19.89) | 3(0) | 1 293.604 0(0) | 14.596 230(0.119) | 3(0) | |
m=20,N=10 | 26 362.0 | — | — | — | — | 1 139.965 0(2.78) | 3(0) | ||
m=20,N=20 | 24 027.1 | — | — | — | — | 1 098.458 0(0) | 1(0) | ||
m=30,N=10 | 37 851.2 | — | — | — | — | 1 793.509 0(0.75) | 3(0) | ||
m=30,N=20 | 36 520.4 | — | — | — | — | 1 620.478 0(1.63) | 3(0) | ||
m=50,N=10 | 63 168.1 | — | — | — | — | 2 871.462 0(0) | 1(0) | ||
m=50,N=20 | 58 517.1 | — | — | — | — | 2 718.846 0(0.407) | 3(0) | ||
大 规 模 | m=100,N=10 | 122 523.6 | — | — | — | — | 5 768.800 0(0) | 1(0) | |
m=100,N=20 | 114 579.3 | — | — | — | — | 5 448.920 0(0.33) | 3(0) | ||
m=100,N=50 | 110 990.4 | — | — | — | — | 5 205.552 0(2.689) | 1(0) |
样例 | W | Repair | Without repair |
---|---|---|---|
m=10, N=5 | 17 920 | 715.58 | 716.73 |
m=20, N=20 | 24 027 | 1 249.02 | 1 253.33 |
m=100, N=10 | 122 523 | 6 909.72 | 6 912.81 |
m=100, N=50 | 110 990 | 5 574.68 | 5 599.71 |
表4 修复策略的输出解成本对比
Tab.4 Comparison of cost for repair strategies
样例 | W | Repair | Without repair |
---|---|---|---|
m=10, N=5 | 17 920 | 715.58 | 716.73 |
m=20, N=20 | 24 027 | 1 249.02 | 1 253.33 |
m=100, N=10 | 122 523 | 6 909.72 | 6 912.81 |
m=100, N=50 | 110 990 | 5 574.68 | 5 599.71 |
1 | KELLERER H, PFERSCHY U, PISINGER D. The multiple-choice knapsack problem[M]// Knapsack Problems. Berlin: Springer, 2004: 317-347. 10.1007/978-3-540-24777-7_11 |
2 | SHARKEY T C, ROMEIJN H E, GEUNES J. A class of nonlinear nonseparable continuous knapsack and multiple-choice knapsack problems[J]. Mathematical Programming, 2011, 126(1): 69-96. 10.1007/s10107-009-0274-9 |
3 | TAAFFE K, GEUNES J, ROMEIJN H E. Target market selection and marketing effort under uncertainty: the selective newsvendor[J]. European Journal of Operational Research, 2008, 189(3): 987-1003. 10.1016/j.ejor.2006.11.049 |
4 | NAUSS R M. The 0-1 knapsack problem with multiple choice constraints[J]. European Journal of Operational Research, 1978, 2(2): 125-131. 10.1016/0377-2217(78)90108-x |
5 | KWONG C K, MU L F, TANG J F, et al. Optimization of software components selection for component-based software system development[J]. Computers & Industrial Engineering, 2010, 58(4): 618-624. 10.1016/j.cie.2010.01.003 |
6 | SINHA A, ZOLTNERS A A. The multiple-choice knapsack problem[J]. Operations Research, 1979, 27(3): 503-515. 10.1287/opre.27.3.503 |
7 | KOZANIDIS G, MELACHRINOUDIS E, SOLOMON M M. The linear multiple choice Knapsack problem[J]. Operations Research Letters, 1979, 8(2): 95-100. |
8 | DYER M E, KAYAL N, WALKER J. A branch and bound algorithm for solving the multiple-choice knapsack problem[J]. Journal of Computational & Applied Mathematics, 1984, 11(2):231-249. 10.1016/0377-0427(84)90023-2 |
9 | KRZYSZTOF DUDZIŃSKI, WALUKIEWICZ S. Exact methods for the knapsack problem and its generalizations[J]. European Journal of Operational Research, 1987, 28(1): 3-21. 10.1016/0377-2217(87)90165-2 |
10 | GENS G, LEVNER E V. An approximate binary search algorithm for the multiple-choice knapsack problem[J]. Information Processing Letters, 1998, 67(5): 261-265. 10.1016/s0020-0190(98)00115-x |
11 | HIFI M, MICHRAFY M, SBIHI A. A reactive local search-based algorithm for the multiple-choice multi-dimensional knapsack problem[J]. Computational Optimization & Applications, 2006, 33(2): 271-285. 10.1007/s10589-005-3057-0 |
12 | NASRALLAH A, THYAGATURU A S, ALHARBI Z, et al. Ultra-Low Latency (ULL) networks: the IEEE TSN and IETF DetNet standards and related 5G ULL research[J]. IEEE Communications Surveys & Tutorials, 2018, 21(1): 88-145. 10.1109/comst.2018.2869350 |
13 | DELAGE E, MANNOR S. Percentile optimization for Markov decision processes with parameter uncertainty[J]. Operations Research, 2010, 58(1): 203-213. 10.1287/opre.1080.0685 |
14 | DOERR B, DOERR C, NEUMANN A, et al. Optimization of chance-constrained submodular functions[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2020:1460-1467. 10.1609/aaai.v34i02.5504 |
15 | SHAPIRO A, DENTCHEVA D, RUSZCZYЙSKI A. Lectures on Stochastic Programming: Modeling and Theory[M/OL]. [S.l.]: SIAM, 2009 [2023-11-09]. . 10.1137/1.9780898718751 |
16 | KLEINBERG J, RABANI Y, TARDOS É. Allocating bandwidth for bursty connections[J]. SIAM Journal Computing, 2000, 30(1): 191-217. 10.1137/s0097539797329142 |
17 | GOEL A, INDYK P. Stochastic load balancing and related problems[C]// Proceedings of the 40th Annual Symposium on Foundations of Computer Science. Washington, DC: IEEE Computer Society, 1999: 579-586. |
18 | GOYAL V, RAVI R. A PTAS for the chance-constrained knapsack problem with random item sizes[J]. Operations Research Letters, 2010, 38(3): 161-164. 10.1016/j.orl.2010.01.003 |
19 | CHAI R, SAVVARIS A, TSOURDOS A, et al. Solving trajectory optimization problems in the presence of probabilistic constraints[J]. IEEE Transactions on Cybernetics, 2020, 50(10): 4332-4345. 10.1109/tcyb.2019.2895305 |
20 | ZHANG X, MA J, CHENG Z, et al. Trajectory generation by chance-constrained nonlinear MPC with probabilistic prediction[J]. IEEE Transactions on Cybernetics, 2021, 51(7): 3616-3629. 10.1109/tcyb.2020.3032711 |
21 | YANG F, CHAKRABORTY N. Algorithm for optimal chance constrained knapsack problem with applications to multi-robot teaming[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 1043-1049. 10.1109/icra.2018.8461040 |
22 | LI X, LIU S, WANG J, et al. Chance-constrained multiple-choice knapsack problem: model, algorithms, and applications[EB/OL]. [2023-11-15]. . |
23 | TANG K, LIU S, YANG P, et al. Few-shots parallel algorithm portfolio construction via co-evolution[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3): 595-607. 10.1109/tevc.2021.3059661 |
24 | LIU S, TANG K, YAO X. Memetic search for vehicle routing with simultaneous pickup-delivery and time windows[J]. Swarm and Evolutionary Computation, 2021, 66: 100927. 10.1016/j.swevo.2021.100927 |
25 | LIU S, ZHANG Y, TANG K, et al. How good is neural combinatorial optimization? A systematic evaluation on the traveling salesman problem[J]. IEEE Computational Intelligence Magazine, 2023, 18(3): 14-28. 10.1109/mci.2023.3277768 |
26 | 刘晟材,杨鹏,唐珂.近似最优并行算法组智能汇聚构造[J].中国科学:技术科学,2023,53:280-290. 10.1360/sst-2021-0372 |
LIU S C, YANG P, TANG K. Approximately optimal construction of parallel algorithm portfolios by evolutionary intelligence[J]. SCIENTIA SINICA Technologica, 2023, 53: 280-290. 10.1360/sst-2021-0372 |
[1] | 刘栋, 李晨航, 吴长茂, 茹法鑫, 夏媛媛. 基于可校正强化搜索遗传算法的光学系统自动设计[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2838-2847. |
[2] | 高麟, 周宇, 邝得互. 进化双层自适应局部特征选择[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1408-1414. |
[3] | 佘维, 李阳, 钟李红, 孔德锋, 田钊. 基于改进实数编码遗传算法的神经网络超参数优化[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 671-676. |
[4] | 徐兰天, 李荣华, 戴永恒, 王国仁. 面向超图的极大团搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2319-2324. |
[5] | 梁军, 洪泽泓, 余松森. 基于改进粒子群优化算法和遗传变异的图像分割模型[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1743-1749. |
[6] | 王彬, 向甜, 吕艺东, 王晓帆. 基于NSGA‑Ⅱ的自适应多尺度特征通道分组优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1401-1408. |
[7] | 张敏, 韩晓龙. 多目标模糊机会约束规划的低碳多式联运路径优化[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 636-644. |
[8] | 薛海蓉, 韩晓龙. 基于改进NSGA-Ⅱ的考虑自动引导车充电策略的集成调度[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3848-3855. |
[9] | 邓辅秦, 黄焕钊, 谭朝恩, 付兰慧, 张建民, 林天麟. 结合遗传算法和滚动调度的多机器人任务分配算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3833-3839. |
[10] | 范厚明, 牟爽, 岳丽君. 考虑冲突和拥堵的自动导引车调度与路径规划协同优化[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2281-2291. |
[11] | 刘延飞, 彭征, 王艺辉, 王忠. 基于改进的遗传算法的有刷直流电机PID参数整定[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1634-1641. |
[12] | 李晓寒, 贾华丁, 程雪, 李太勇. 基于改进遗传算法和图神经网络的股市波动预测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1624-1633. |
[13] | 陈浩杰, 范江亭, 刘勇. 深度强化学习解决动态旅行商问题[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1194-1200. |
[14] | 陈权, 李莉, 陈永乐, 段跃兴. 面向深度学习可解释性的对抗攻击算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 510-518. |
[15] | 刘忠慧, 王梓宥, 闵帆. 近似概念的遗传生成算法及其推荐应用[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 412-418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||