| 1 | LOWE G D. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.  10.1023/b:visi.0000029664.99615.94 | 
																													
																						| 2 | MUR-ARTAL R, MOTEIL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163.  10.1109/tro.2015.2463671 | 
																													
																						| 3 | FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[M]// Readings in Computer Vision: Issues, Problems, Principles, and Paradigms. San Francisco: Morgan Kaufmann Publishers Inc., 1987: 726-740.  10.1016/b978-0-08-051581-6.50070-2 | 
																													
																						| 4 | RAGURAM R, J-M FRAHN, POLLEFEYS M. A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus[C]// Proceedings of the 10th European Conference on Computer Vision. Berlin: Springer, 2008: 500-513.  10.1007/978-3-540-88688-4_37 | 
																													
																						| 5 | GOLD S, RANGARAJAN A. A graduated assignment algorithm for graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.  10.1109/34.491619 | 
																													
																						| 6 | TIAN Y, YAN J, ZHANG H, et al. On the convergence of graph matching: graduated assignment revisited[C]// Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer, 2012: 821-835.  10.1007/978-3-642-33712-3_59 | 
																													
																						| 7 | 贾雯晓,张贵仓,汪亮亮,等.基于SIFT和改进的RANSAC图像配准算法[J].计算机工程与应用,2018,54(2):203-207.  10.3778/j.issn.1002-8331.1707-0264 | 
																													
																						|  | JIA W X, ZHANG G C, WANG L L, et al. Image registration algorithm based on SIFT and improved RANSAC[J]. Computer Engineering and Applications, 2018, 54(2): 203-207.  10.3778/j.issn.1002-8331.1707-0264 | 
																													
																						| 8 | LEORDEANU M, HEBERT M. A spectral technique for correspondence problems using pairwise constraints[C]// Proceedings of the Tenth IEEE International Conference on Computer Vision. Piscataway: IEEE, 2005: 1482-1489.  10.1109/iccv.2005.20 | 
																													
																						| 9 | 樊玮,王慧敏,邢艳.基于自编码器的多视图属性网络表示学习模型[J].计算机应用,2021,41(4):1064-1070.  10.11772/j.issn.1001-9081.2020061006 | 
																													
																						|  | FAN W, WANG H M, XING Y. Auto-encoder based multi-view attributed network representation learning model[J]. Journal of Computer Applications, 2021, 41(4): 1064-1070.  10.11772/j.issn.1001-9081.2020061006 | 
																													
																						| 10 | ZANFIR A, SMINCHISESCU C. Deep learning of graph matching[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2684-2693.  10.1109/cvpr.2018.00284 | 
																													
																						| 11 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2023-05-01]. . | 
																													
																						| 12 | TYSZKIEWICZ M J, FUA P, TRULLS E. DISK: learning local features with policy gradient [EB/OL]. (2022-06-24)[2023-05-01]. .  10.1109/iccv51070.2023.00203 | 
																													
																						| 13 | LEE J, JEONG Y, KIM S, et al. Learning to distill convolutional features into compact local descriptors[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 897-907.  10.1109/wacv48630.2021.00094 | 
																													
																						| 14 | 徐少康,张战成,姚浩男,等.基于姿态编码器的2D/3D脊椎医学图像实时配准方法[J].计算机应用,2023,43(2):589-594.  10.11772/j.issn.1001-9081.2021122147 | 
																													
																						|  | XU S K, ZHANG Z C, YAO H N, et al. 2D/3D spine medical image real-time registration method based on pose encoder[J]. Journal of Computer Applications, 2023, 43(2):589-594.  10.11772/j.issn.1001-9081.2021122147 | 
																													
																						| 15 | WANG R, YAN J, YANG X. Combinatorial learning of robust deep graph matching: an embedding based approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6):6984-7000.  10.1109/tpami.2020.3005590 | 
																													
																						| 16 | SHEN X, WANG C, LI X, et al. RF-Net: an end-to-end image matching network based on receptive field[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8124-8132.  10.1109/cvpr.2019.00832 | 
																													
																						| 17 | WANG F-D, XUE N, ZHANG Y, et al. A functional representation for graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(11): 2737-2754. | 
																													
																						| 18 | VINIAVSKYI O, DOBKO M, MISHKIN D, et al. OpenGlue: open-source graph neural net based pipeline for image matching [EB/OL]. [2023-05-01]. . | 
																													
																						| 19 | LIU H, WANG T, LI Y, et al. Deep probabilistic graph matching [EB/OL]. (2022-01-05) [2023-05-01]. .  10.1158/0008-5472.sabcs12-p4-05-01 | 
																													
																						| 20 | JIANG W, TRULLS E, HOSANG J, et al. COTR: correspondence transformer for matching across images[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 6187-6197.  10.1109/iccv48922.2021.00615 | 
																													
																						| 21 | LIN Y, YANG M, JUN Y, et. al. Graph matching with bi-level noisy correspondence [EB/OL]. (2022-12-08)[2023-05-01]. .  10.1109/iccv51070.2023.02135 | 
																													
																						| 22 | DENG Y, MA J. ResMatch: residual attention learning for local feature matching [EB/OL]. [2023-05-01]. .  10.1609/aaai.v38i2.27915 | 
																													
																						| 23 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																						| 24 | LAGUNA A B, RIBA E, PONSA D, et al. Key.Net: key-point detection by handcrafted and learned CNN filters[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5835-5843.  10.1109/iccv.2019.00593 | 
																													
																						| 25 | ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications [EB/OL]. [2021-10-06]. . | 
																													
																						| 26 | LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3001.  10.1109/iccv.2017.324 | 
																													
																						| 27 | WANG R, GUO Z, JIANG S, et.al. Deep learning of partial graph matching via differentiable top-k [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 6272-6281.  10.1109/cvpr52729.2023.00607 |