[1] |
NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for COVID-19 detection with generative adversarial networks in edge cloud computing[J]. IEEE Internet of Things Journal, 2022, 9(12): 10257-10271.
|
[2] |
LEE S, CHOI D H. Federated reinforcement learning for energy management of multiple smart homes with distributed energy resources[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 488-497.
|
[3] |
DONG J, WANG L, FANG Z, et al. Federated class-incremental learning[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10154-10163.
|
[4] |
ZHU X, LI G, HU W. Heterogeneous federated knowledge graph embedding learning and unlearning[C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2444-2454.
|
[5] |
LOPES R G, FENU S, STARNER T. Data-free knowledge distillation for deep neural networks[EB/OL]. [2024-12-18]..
|
[6] |
NAYAK G K, MOPURI K R, SHAJ V, et al. Zero-shot knowledge distillation in deep networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019:4743-4751.
|
[7] |
TRAN M T, LE T, LE X M, et al. NAYER: noisy layer data generation for efficient and effective data-free knowledge distillation[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 23860-23869.
|
[8] |
李雪,姚光乐,王洪辉,等. 基于样本增量学习的遥感影像分类[J]. 计算机应用, 2024, 44(3): 732-736.
|
|
LI X, YAO G L, WANG H H, et al. Remote sensing image classification based on sample incremental learning[J]. Journal of Computer Applications, 2024, 44(3): 732-736.
|
[9] |
王虎,王晓峰,李可. 基于潜在空间生成器的联邦知识蒸馏[J]. 计算机应用研究, 2024, 41(11):3281-3287.
|
|
WANG H, WANG X F, LI K. Knowledge distillation in federated learning based on latent space generator[J]. Application Research of Computers, 2024, 41(11):3281-3287.
|
[10] |
GAO Q, ZHAO C, GHANEM B, et al. R-DFCIL: relation-guided representation learning for data-free class incremental learning[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13683. Cham: Springer, 2022: 423-439.
|
[11] |
LUO K, WANG S, FU Y, et al. DFRD: data-free robustness distillation for heterogeneous federated learning[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 17854-17866.
|
[12] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
[13] |
KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8107-8116.
|
[14] |
LEE R, FERNANDEZ-MARQUES J, HU S X, et al. Recurrent early exits for federated learning with heterogeneous clients[C]// Proceedings of the 41st International Conference on Machine Learning. New York: JMLR.org, 2024: 26568-26588.
|
[15] |
YOON J, JEONG W, LEE G, et al. Federated continual learning with weighted inter-client transfer[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 12073-12086.
|
[16] |
ZHANG Z, ZHANG Y, GUO D, et al. Communication-efficient federated continual learning for distributed learning system with Non-IID data[J]. SCIENCE CHINA Information Sciences, 2023, 66(2): No.122102.
|
[17] |
GALLI F, JUNG K, BISWAS S, et al. Advancing personalized federated learning: group privacy, fairness, and beyond[J]. SN Computer Science, 2023, 4(6): No.831.
|
[18] |
BATRA H, CLARK R. EVCL: elastic variational continual learning with weight consolidation[EB/OL]. [2024-12-18]..
|
[19] |
MA Y, XIE Z, WANG J, et al. Continual federated learning based on knowledge distillation[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2182-2188.
|
[20] |
ZHANG H, XIE Z, ZAREI R, et al. Adaptive client selection in resource constrained federated learning systems: a deep reinforcement learning approach[J]. IEEE Access, 2021, 9: 98423-98432.
|
[21] |
HU K, LU M, LI Y, et al. A federated incremental learning algorithm based on dual attention mechanism[J]. Applied Sciences, 2022, 12(19): No.10025.
|
[22] |
JIN Z, ZHOU J, LI B, et al. FL-IIDS: a novel federated learning-based incremental intrusion detection system[J]. Future Generations Computer Systems, 2024, 151: 57-70.
|
[23] |
BABAKNIYA S, FABIAN Z, HE C, et al. A data-free approach to mitigate catastrophic forgetting in federated class incremental learning for vision tasks[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 66408-66425.
|
[24] |
LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 1188-1196.
|
[25] |
KRIZHEVSKY A. Learning multiple layers of features from tiny images[R/OL]. [2024-12-18]..
|
[26] |
LE Y, YANG X. Tiny ImageNet visual recognition challenge[R/OL]. [2024-12-18]..
|
[27] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
[28] |
LI Z, HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935-2947.
|
[29] |
KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526.
|
[30] |
ZHANG J, CHEN C, ZHUANG W, et al. TARGET: federated class-continual learning via exemplar-free distillation[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 4759-4770.
|
[31] |
TRAN M T, LE T, LE X M, et al. Text-enhanced data-free approach for federated class-incremental learning[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 23870-23880.
|