《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (6): 1785-1795.DOI: 10.11772/j.issn.1001-9081.2022050766
收稿日期:
2022-05-27
修回日期:
2022-09-27
接受日期:
2022-10-13
发布日期:
2023-06-08
出版日期:
2023-06-10
通讯作者:
陈斌
作者简介:
陈一驰(1997—),男,湖南岳阳人,博士研究生,主要研究方向:计算机视觉、终身学习
Yichi CHEN1,2, Bin CHEN2,3,4()
Received:
2022-05-27
Revised:
2022-09-27
Accepted:
2022-10-13
Online:
2023-06-08
Published:
2023-06-10
Contact:
Bin CHEN
About author:
CHEN Yichi, born in 1997, Ph. D. candidate. His research interests include computer vision, lifelong learning.
Supported by:
摘要:
终身学习(LLL)作为一种新兴方法打破了传统机器学习的局限性,并赋予了模型能够像人类一样在学习过程中不断积累、优化并转移知识的能力。近年来,随着深度学习的广泛应用,越来越多的研究致力于解决深度神经网络中出现的灾难性遗忘问题和摆脱稳定性-可塑性困境,并将LLL方法应用于各种各样的实际场景中,以推进人工智能由弱向强的发展。针对计算机视觉领域,首先,在图像分类任务中将LLL方法归纳为四大类型:基于数据驱动的方法、基于优化过程的方法、基于网络结构的方法和基于知识组合的方法;然后,介绍了LLL方法在其他视觉任务中的典型应用和相关评估指标;最后,针对现阶段LLL方法的不足之处进行讨论并提出了LLL方法未来发展的方向。
中图分类号:
陈一驰, 陈斌. 计算机视觉中的终身学习综述[J]. 计算机应用, 2023, 43(6): 1785-1795.
Yichi CHEN, Bin CHEN. Review of lifelong learning in computer vision[J]. Journal of Computer Applications, 2023, 43(6): 1785-1795.
主要方法 | 子方法 |
---|---|
基于数据驱动的终身学习 | 存储任务子集 |
生成任务数据 | |
基于优化过程的终身学习 | 损失函数设计 |
梯度更新 | |
学习率更新 | |
基于网络结构的终身学习 | 静态结构 |
动态结构 | |
基于知识组合的终身学习 | 以上方法的组合 |
表1 终身学习方法的分类
Tab. 1 Classification of lifelong learning methods
主要方法 | 子方法 |
---|---|
基于数据驱动的终身学习 | 存储任务子集 |
生成任务数据 | |
基于优化过程的终身学习 | 损失函数设计 |
梯度更新 | |
学习率更新 | |
基于网络结构的终身学习 | 静态结构 |
动态结构 | |
基于知识组合的终身学习 | 以上方法的组合 |
1 | CHEN Z Y, LIU B. Lifelong Machine Learning, SLAIML [M]. 2nd ed. Cham: Springer, 2018: 1-207. 10.2200/s00832ed1v01y201802aim037 |
2 | GOODFELLOW I J, MIRZA M, XIAO D, et al. An empirical investigation of catastrophic forgetting in gradient-based neural networks [EB/OL]. (2015-03-04) [2022-09-23].. |
3 | GAMA J, ŽLIOBAITĖ I, BIFET A, et al. A survey on concept drift adaptation [J]. ACM Computing Surveys, 2014, 46(4): No.44. 10.1145/2523813 |
4 | MERMILLOD M, BUGAISKA A, BONIN P. The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects[J]. Frontiers in Psychology, 2013, 4: No.504. 10.3389/fpsyg.2013.00504 |
5 | PARISI G I, KEMKER R, PART J L, et al. Continual lifelong learning with neural networks: a review[J]. Neural Networks, 2019, 113: 54-71. 10.1016/j.neunet.2019.01.012 |
6 | QU H X, RAHMANI H, XU L, et al. Recent advances of continual learning in computer vision: an overview [EB/OL]. (2021-09-24) [2022-09-26].. |
7 | DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: defying forgetting in classification tasks [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2022, 44(7): 3366-3385. |
8 | MASANA M, LIU X L, TWARDOWSKI B, et al. Class-incremental learning: survey and performance evaluation on image classification [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2023, 45(5): 5513-5533. |
9 | REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5533-5542. 10.1109/cvpr.2017.587 |
10 | CHAUDHRY A, ROHRBACH M, ELHOSEINY M, et al. On tiny episodic memories in continual learning [EB/OL]. (2019-06-04) [2022-09-23].. |
11 | BUZZEGA P, BOSCHINI M, PORRELLO A, et al. Rethinking experience replay: a bag of tricks for continual learning[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 2180-2187. 10.1109/icpr48806.2021.9412614 |
12 | ALJUNDI R, CACCIA L, BELILOVSKY E, et al. Online continual learning with maximally interfered retrieval[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 11872-11883. 10.1109/cvpr.2019.01151 |
13 | BELOUADAH E, POPESCU A. IL2M: class incremental learning with dual memory[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 583-592. 10.1109/iccv.2019.00067 |
14 | CHAUDHRY A, GORDO A, DOKANIA P, et al. Using hindsight to anchor past knowledge in continual learning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 6993-7001. 10.1609/aaai.v35i8.16861 |
15 | ISCEN A, ZHANG J, LAZEBNIK S, et al. Memory-efficient incremental learning through feature adaptation [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 699-715. |
16 | ZHU F, ZHANG X Y, WANG C, et al. Prototype augmentation and self-supervision for incremental learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5867-5876. 10.1109/cvpr46437.2021.00581 |
17 | HE C, WANG R P, CHEN X L. A tale of two CILs: the connections between class incremental learning and class imbalanced learning, and beyond [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3554-3564. 10.1109/cvprw53098.2021.00395 |
18 | KORYCKI Ł, KRAWCZYK B. Class-incremental experience replay for continual learning under concept drift [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3644-3653. 10.1109/cvprw53098.2021.00404 |
19 | MAI Z D, LI R W, KIM H, et al. Supervised contrastive replay: revisiting the nearest class mean classifier in online class-incremental continual learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3584-3594. 10.1109/cvprw53098.2021.00398 |
20 | SHIN H, LEE J K, KIM J, et al. Continual learning with deep generative replay[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 2994-3003. |
21 | ATKINSON C, McCANE B, SZYMANSKI L, et al. Pseudo-recursal: solving the catastrophic forgetting problem in deep neural networks[EB/OL]. (2018-05-07) [2022-09-23].. 10.1016/j.neucom.2020.11.050 |
22 | van de VEN G M, TOLIAS A S. Generative replay with feedback connections as a general strategy for continual learning[EB/OL]. (2019-04-17) [2022-09-23].. |
23 | CONG Y L, ZHAO M Y, LI J Q, et al. GAN memory with no forgetting [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 16481-16494. |
24 | PEREZ E, STRUB F, DE VRIES H, et al. FiLM: visual reasoning with a general conditioning layer [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3942-3951. 10.1609/aaai.v32i1.11671 |
25 | ZHAO M Y, CONG Y L, CARIN L. On leveraging pretrained GANs for generation with limited data [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 11340-11351. |
26 | RAMAPURAM J, GREGOROVA M, KALOUSIS A. Lifelong generative modeling [J]. Neurocomputing, 2020, 404: 381-400. 10.1016/j.neucom.2020.02.115 |
27 | YE F, BORS A G. Learning latent representations across multiple data domains using lifelong VAEGAN[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12365. Cham: Springer, 2020: 777-795. |
28 | LESORT T, CASELLES-DUPRÉ H, GARCIA-ORTIZ M, et al. Generative models from the perspective of continual learning [C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8851986 |
29 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5769-5779. |
30 | KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526. 10.1073/pnas.1611835114 |
31 | CHAUDHRY A, DOKANIA P K, AJANTHAN T, et al. Riemannian walk for incremental learning: understanding forgetting and intransigence[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 556-572. |
32 | RITTER H, BOTEV A, BARBER D. Online structured Laplace approximations for overcoming catastrophic forgetting[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 3742-3752. |
33 | ZENKE F, POOLE B, GANGULI S. Continual learning through synaptic intelligence [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3987-3995. 10.1007/978-1-4899-7687-1_171 |
34 | ALJUNDI R, BABILONI F, ELHOSEINY M, et al. Memory aware synapses: learning what (not) to forget [C]// Proceedings of the 2018 European Conference on Computer Vision. LNCS 11207. Cham: Springer, 2018: 144-161. |
35 | REN M Y, LIAO R J, FETAYA E, et al. Incremental few-shot learning with attention attractor networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 5275-5285. |
36 | HU W P, QIN Q, WANG M Y, et al. Continual learning by using information of each class holistically [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 7797-7805. 10.1609/aaai.v35i9.16952 |
37 | LI Z Z, HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935-2947. 10.1109/tpami.2017.2773081 |
38 | RANNEN A, ALJUNDI R, BLASCHKO M B, et al. Encoder based lifelong learning[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1329-1337. 10.1109/iccv.2017.148 |
39 | DHAR P, SINGH R V, PENG K C, et al. Learning without memorizing [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5133-5141. 10.1109/cvpr.2019.00528 |
40 | DOUILLARD A, CORD M, OLLION C, et al. PODNet: pooled outputs distillation for small-tasks incremental learning[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12365. Cham: Springer, 2020: 86-102. |
41 | CHA H, LEE J, SHIN J. Co2 L: contrastive continual learning[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9496-9505. 10.1109/iccv48922.2021.00938 |
42 | LOPEZ-PAZ D, RANZATO M. Gradient episodic memory for continual learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6470-6479. |
43 | CHAUDHRY A, RANZATO M, ROHRBACH M, et al. Efficient lifelong learning with A-GEM [EB/OL]. (2019-01-09) [2022-09-23].. |
44 | GUO Y H, LIU M R, YANG T B, et al. Improved schemes for episodic memory-based lifelong learning [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 1023-1035. |
45 | TANG S X, CHEN D P, ZHU J G, et al. Layerwise optimization by gradient decomposition for continual learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9629-9638. 10.1109/cvpr46437.2021.00951 |
46 | FARAJTABAR M, AZIZAN N, MOTT A, et al. Orthogonal gradient descent for continual learning[C]// Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2020: 3762-3773. 10.1109/taai54685.2021.00034 |
47 | SAHA G, GARG I, ROY K. Gradient projection memory for continual learning [EB/OL]. (2021-03-17) [2022-09-23].. |
48 | EBRAHIMI S, ELHOSEINY M, DARRELL T, et al. Uncertainty-guided continual learning with Bayesian neural networks [EB/OL].(2020-02-20) [2022-09-23].. |
49 | FERNANDO C, BANARSE D, BLUNDELL C, et al. PathNet: evolution channels gradient descent in super neural networks [EB/OL].(2017-01-30)[2022-09-23].. |
50 | RAJASEGARAN J, HAYAT M, KHAN S, et al. Random path selection for incremental learning [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 12669-12679. 10.1109/cvpr42600.2020.01360 |
51 | MALLYA A, LAZEBNIK S. PackNet: adding multiple tasks to a single network by iterative pruning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7765-7773. 10.1109/cvpr.2018.00810 |
52 | SERRA J, SURIS D, MIRON M, et al. Overcoming catastrophic forgetting with hard attention to the task [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 4548-4557. |
53 | MALLYA A, DAVIS D, LAZEBNIK S. Piggyback: adapting a single network to multiple tasks by learning to mask weights [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 72-88. |
54 | HURTADO J, RAYMOND-SAEZ A, SOTO A. Optimizing reusable knowledge for continual learning via metalearning [C/OL]// Proceedings of the 35th Conference on Neural Information Processing Systems [2022-09-23].. 10.48550/arXiv.2106.05390 |
55 | ABATI D, TOMCZAK J, BLANKEVOORT T, et al. Conditional channel gated networks for task-aware continual learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3930-3939. 10.1109/cvpr42600.2020.00399 |
56 | MAZUMDER P, SINGH P, RAI P. Few-shot lifelong learning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 2337-2345. 10.1609/aaai.v35i3.16334 |
57 | RUSU A A, RABINOWITZ N C, DESJARDINS G, et al. Progressive neural networks[EB/OL]. (2022-10-22) [2022-11-23]. . |
58 | ALJUNDI R, CHAKRAVARTY P, TUYTELAARS T. Expert gate: lifelong learning with a network of experts [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7120-7129. 10.1109/cvpr.2017.753 |
59 | YOON J, YANG E, LEE J, et al. Lifelong learning with dynamically expandable networks [EB/OL]. (2018-06-11) [2022-09-23].. |
60 | XU J, ZHU Z X. Reinforced continual learning [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 907-916. 10.7551/mitpress/11474.003.0014 |
61 | LI X L, ZHOU Y B, WU T F, et al. Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 3925-3934. |
62 | LEE S, STOKES J, EATON E. Learning shared knowledge for deep lifelong learning using deconvolutional networks[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2837-2844. 10.24963/ijcai.2019/393 |
63 | YOON J, KIM S, YANG E, et al. Scalable and order-robust continual learning with additive parameter decomposition[EB/OL]. (2020-02-15) [2022-09-23].. |
64 | SINGH P, VERMA V K, MAZUMDER P, et al. Calibrating CNNs for lifelong learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 15579-15590. |
65 | KUO N I H, HARANDI M, FOURRIER N, et al. Plastic and stable gated classifiers for continual learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3548-3553. 10.1109/cvprw53098.2021.00394 |
66 | NGUYEN C V, LI Y Z, BUI T D, et al. Variational continual learning [EB/OL]. (2018-05-20) [2022-09-23].. |
67 | CASTRO F M, MARÍN-JIMÉNEZ M J, GUIL N, et al. End-to-end incremental learning [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11216. Cham: Springer, 2018: 241-257. |
68 | HOU S H, PAN X Y, LOY C C, et al. Lifelong learning via progressive distillation and retrospection [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham: Springer, 2018: 452-467. |
69 | 李国锋. 深度神经网络模型持续学习能力的研究[D]. 成都:电子科技大学, 2021:24-53. |
LI G F. The research on continual learning ability of deep neural network model[D]. Chengdu: University of Electronic Science and Technology of China, 2021:24-53. | |
70 | WU Y, CHEN Y P, WANG L J, et al. Incremental classifier learning with generative adversarial networks [EB/OL]. (2018-02-02) [2022-09-23].. |
71 | HE C, WANG R P, SHAN S G, et al. Exemplar-supported generative reproduction for class incremental learning[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.98. |
72 | ACHILLE A, ECCLES T, MATTHEY L, et al. Life-long disentangled representation learning with cross-domain latent homologies [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 9895-9905. |
73 | OSTAPENKO O, PUSCAS M, KLEIN T, et al. Learning to remember: a synaptic plasticity driven framework for continual learning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11313-11321. 10.1109/cvpr.2019.01158 |
74 | YANG Y, ZHOU D W, ZHAN D C, et al. Adaptive deep models for incremental learning: considering capacity scalability and sustainability[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 74-82. 10.1145/3292500.3330865 |
75 | GUPTA G, YADAV K, PAULL L. La-MAML: look-ahead meta learning for continual learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 11588-11598. |
76 | CHOI Y, EL-KHAMY M, LEE J. Dual-teacher class-incremental learning with data-free generative replay [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3538-3547. 10.1109/cvprw53098.2021.00393 |
77 | SHMELKOV K, SCHMID C, ALAHARI K. Incremental learning of object detectors without catastrophic forgetting [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3420-3429. 10.1109/iccv.2017.368 |
78 | PÉREZ-RÚA J M, ZHU X T, HOSPEDALES T M, et al. Incremental few-shot object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13843-13852. 10.1109/cvpr42600.2020.01386 |
79 | JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5826-5836. 10.1109/cvpr46437.2021.00577 |
80 | ZHOU W, CHANG S Y, SOSA N, et al. Lifelong object detection[EB/OL]. (2020-09-02) [2022-09-23].. |
81 | LIU X L, YANG H, RAVICHANDRAN A, et al. Multi-task incremental learning for object detection [EB/OL]. (2020-11-18) [2022-09-23].. |
82 | BAWEJA C, GLOCKER B, KAMNITSAS K. Towards continual learning in medical imaging [EB/OL]. (2018-11-06) [2022-09-23].. |
83 | ÖZGÜN S, RICKMANN A M, ROY A G, et al. Importance driven continual learning for segmentation across domains[C]// Proceedings of the 2020 International Workshop on Machine Learning in Medical Imaging, LNCS 12436. Cham: Springer, 2020: 423-433. |
84 | MICHIELI U, ZANUTTIGH P. Incremental learning techniques for semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 3205-3212. 10.1109/iccvw.2019.00400 |
85 | LI Z Y, ZHONG C H, WANG R X, et al. Continual learning of new diseases with dual distillation and ensemble strategy[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12261. Cham: Springer, 2020: 169-178. |
86 | CERMELLI F, MANCINI M, ROTA BULÒ S R, et al. Modeling the background for incremental learning in semantic segmentation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9230-9239. 10.1109/cvpr42600.2020.00925 |
87 | DOUILLARD A, CHEN Y F, DAPOGNY A, et al. PLOP: learning without forgetting for continual semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4039-4049. 10.1109/cvpr46437.2021.00403 |
88 | MARACANI A, MICHIELI U, TOLDO M, et al. RECALL: replay-based continual learning in semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7006-7015. 10.1109/iccv48922.2021.00694 |
89 | MICHIELI U, ZANUTTIGH P. Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1114-1124. 10.1109/cvpr46437.2021.00117 |
90 | SEFF A, BEATSON A, SUO D, et al. Continual learning in generative adversarial nets[EB/OL]. (2017-05-23) [2022-09-23].. |
91 | WU C S, HERRANZ L, LIU X L, et al. Memory replay GANs: learning to generate new categories without forgetting[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 5966-5976. |
92 | RIOS A, ITTI L. Closed-loop memory GAN for continual learning[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 3332-3338. 10.24963/ijcai.2019/462 |
93 | ZHAI M Y, CHEN L, TUNG F, et al. Lifelong GAN: continual learning for conditional image generation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2759-2768. 10.1109/iccv.2019.00285 |
94 | ZHAI M Y, CHEN L, HE J W, et al. Piggyback GAN: efficient lifelong learning for image conditioned generation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12366. Cham: Springer, 2020: 397-413. |
95 | ZHAI M Y, CHEN L, MORI G. Hyper-LifelongGAN: scalable lifelong learning for image conditioned generation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2246-2255. 10.1109/cvpr46437.2021.00228 |
96 | ZHOU M, XIAO J, CHANG Y F, et al. Image de-raining via continual learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4905-4914. 10.1109/cvpr46437.2021.00487 |
97 | ZHU L, SHE Q, ZHANG B, et al. Learning the superpixel in a non-iterative and lifelong manner[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1225-1234. 10.1109/cvpr46437.2021.00128 |
98 | PU N, CHEN W, LIU Y, et al. Lifelong person re-identification via adaptive knowledge accumulation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7897-7906. 10.1109/cvpr46437.2021.00781 |
99 | FAN L, XIONG P X, WEI W, et al. FLAR: a unified prototype framework for few-sample lifelong active recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15374-15383. 10.1109/iccv48922.2021.01511 |
100 | LI T J, KE Q H, RAHMANI H, et al. Else-Net: elastic semantic network for continual action recognition from skeleton data[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13414-13423. 10.1109/iccv48922.2021.01318 |
101 | ROSTAMI M, SPINOULAS L, HUSSEIN M, et al. Detection and continual learning of novel face presentation attacks[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14831-14840. 10.1109/iccv48922.2021.01458 |
102 | WANG S Z, LASKAR Z, MELEKHOV I, et al. Continual learning for image-based camera localization [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3232-3242. 10.1109/iccv48922.2021.00324 |
103 | DÍAZ-RODRÍGUEZ N, LOMONACO V, FILLIAT D, et al. Don’t forget, there is more than forgetting: new metrics for Continual Learning[EB/OL]. (2018-10-31) [2022-09-23].. |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[3] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[4] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[5] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[6] | 付帅, 郭小英, 白茹意, 闫涛, 陈斌. 改进的CloFormer模型与有序回归相结合的年龄评估方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2372-2380. |
[7] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[8] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[9] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[10] | 赵亦群, 张志禹, 董雪. 基于密集残差物理信息神经网络的各向异性旅行时计算方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2310-2318. |
[11] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[12] | 孙逊, 冯睿锋, 陈彦如. 基于深度与实例分割融合的单目3D目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2208-2215. |
[13] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[14] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[15] | 张郅, 李欣, 叶乃夫, 胡凯茜. 基于暗知识保护的模型窃取防御技术DKP[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2080-2086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||