| [1] |
刘邦邦,易国洪,黄祖源. 面向Docker容器的动态负载算法[J]. 计算机科学, 2021, 48(6): 276-281.
|
|
LIU B B, YI G H, HUANG Z Y. Dynamic loading algorithm for Docker container[J]. Computer Science, 2021, 48(6): 276-281.
|
| [2] |
LI H, SHEN J, ZHENG L, et al. Cost-efficient scheduling algorithms based on beetle antennae search for containerized applications in Kubernetes clouds[J]. The Journal of Supercomputing, 2023, 79(9): 10300-10334.
|
| [3] |
PANDA S K, JANA P K. An energy-efficient task scheduling algorithm for heterogeneous cloud computing systems[J]. Cluster Computing, 2019, 22(2): 509-527.
|
| [4] |
MEDEL V, TOLOSANA-CALASANZ R, BAÑARES J Á, et al. Characterising resource management performance in Kubernetes[J]. Computers and Electrical Engineering, 2018, 68: 286-297.
|
| [5] |
YANG Z, WANG X, LI R, et al. HMM-CPM: a cloud instance resource prediction method tracing the workload trends via hidden Markov model[J]. Cluster Computing, 2024, 27(8): 11823-11838.
|
| [6] |
GUPTA S, DILEEP A D, GONSALVES T A. Online sparse BLSTM models for resource usage prediction in cloud datacentres [J]. IEEE Transactions on Network and Service Management, 2020, 17(4): 2335-2349.
|
| [7] |
闫承鑫,陈宁江,刘文斌,等. 面向突变负载的容器资源弹性供给服务策略[J]. 小型微型计算机系统, 2019, 40(4): 787-792.
|
|
YAN C X, CHEN N J, LIU W B, et al. Elastic supply strategy of container resource for mutation load[J]. Journal of Chinese Computer Systems, 2019, 40(4): 787-792.
|
| [8] |
TOFIGHY S, RAHMANIAN A A, GHOBAEI-ARANI M. An ensemble CPU load prediction algorithm using a Bayesian information criterion and smooth filters in a cloud computing environment[J]. Software: Practice and Experience, 2018, 48(12): 2257-2277.
|
| [9] |
NAWROCKI P, OSYPANKA P, POSLUSZNY B. Data-driven adaptive prediction of cloud resource usage[J]. Journal of Grid Computing, 2023, 21(1): No.6.
|
| [10] |
WEN Y, WANG Y, LIU J, et al. CPU usage prediction for cloud resource provisioning based on deep belief network and particle swarm optimization[J]. Concurrency and Computation: Practice and Experience, 2020, 32(14): No.e5730.
|
| [11] |
赵兴朝. 基于Kubernetes的资源预测与调度优化方法研究[D]. 桂林:桂林电子科技大学, 2018: 10-13.
|
|
ZHAO X Z. Research on the methods of resource prediction and scheduling optimization based on Kubernetes[D]. Guilin: Guilin University of Electronic Technology, 2018: 10-13.
|
| [12] |
HUANG Q, LI H, HE Y, et al. PiDicators: an efficient artifact to detect various VMs[C]// Proceedings of the 2020 International Conference on Information and Communications Security, LNCS 12282. Cham: Springer, 2020: 259-275.
|
| [13] |
HE Z. Novel container cloud elastic scaling strategy based on Kubernetes[C]// Proceedings of the IEEE 5th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2020, 1400-1404.
|
| [14] |
TOKA L, DOBREFF G, FODOR B, et al. Machine learning-based scaling management for Kubernetes edge clusters[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 958-972.
|
| [15] |
赵树君,黄倩.基于Kubernetes云原生的弹性伸缩研究[J]. 计算机与现代化, 2021(11): 28-38.
|
|
ZHAO S J, HUANG Q. Research and practice on elastic scaling of cloud-native 5G network [J]. Computer and Modernization, 2021(11): 28-38.
|
| [16] |
VIDAL A, KRISTJANPOLLER W. Gold volatility prediction using a CNN-LSTM approach[J]. Expert Systems with Applications, 2020, 157: No.113481.
|
| [17] |
王艺霏,于雷,滕飞,等. 基于长-短时序特征融合的资源负载预测模型[J]. 计算机应用, 2022, 42(5): 1508-1515.
|
|
WANG Y F, YU L, TENG F, et al. Resource load prediction model based on long-short time series feature fusion[J]. Journal of Computer Applications, 2022, 42(5): 1508-1515.
|
| [18] |
XU M, SONG C, WU H, et al. esDNN: deep neural network based multivariate workload prediction in cloud computing environments[J]. ACM Transactions on Internet Technology, 2022, 22(3): No.75.
|
| [19] |
LI L, DONG J, ZUO D, et al. SLA-aware and energy-efficient VM consolidation in cloud data centers using host state 3rd-order Markov chain model[J]. Chinese Journal of Electronics, 2020, 29(6): 1207-1217.
|
| [20] |
林涛,冯竞凯,郝章肖,等. 基于组合预测模型的云计算资源负载预测研究[J]. 计算机工程与科学, 2020, 42(7): 1168-1173.
|
|
LIN T, FENG J K, HAO Z X, et al. Cloud computing resource load prediction based on combined prediction model[J]. Computer Engineering and Science, 2020, 42(7): 1168-1173.
|
| [21] |
BI J, YUAN H, ZHOU M. Temporal prediction of multiapplication consolidated workloads in distributed clouds[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1763-1773.
|
| [22] |
BI J, LI S, YUAN H, et al. Deep neural networks for predicting task time series in cloud computing systems [C]// Proceedings of the IEEE 16th International Conference on Networking, Sensing and Control. Piscataway: IEEE, 2019: 86-91.
|
| [23] |
张妙妙,吕佳,吴剑,等. 基于正交参数优化LSTM神经网络的SOFC性能预测[J/OL]. 电源学报 [2024-12-29]..
|
|
ZHANG M M, LYU J, WU J, et al. Optimization of LSTM for SOFC performance prediction using orthogonal method[J/OL]. Journal of Power Supply [2024-12-29]. .
|
| [24] |
孙一夫,孙怀宇,陈众,等. 基于改进鲸鱼算法优化LSTM的化工过程故障诊断方法[J]. 现代电子技术, 2024, 47(24): 73-80.
|
|
SUN Y F, SUN H Y, CHEN Z, et al. Method of chemical process fault diagnosis based on MAWOA-LSTM[J]. Modern Electronics Technique, 2024, 47(24): 73-80.
|
| [25] |
洪吉超,裴佳琦,梁峰伟,等. 基于麻雀搜索优化LSTM的实车动力电池SOC估计研究[J]. 西南大学学报(自然科学版), 2024, 46(12): 41-50.
|
|
HONG J C, PEI J Q, LIANG F W, et al. Research on real vehicle power battery SOC estimation based on sparrow search optimized LSTM[J]. Journal of Southwest University (Natural Science Edition), 2024, 46(12): 41-50.
|
| [26] |
BERHICH A, BELOUADHA F Z, KABBAJ M I. LSTM-based models for earthquake prediction[C]// Proceedings of the 3rd International Conference on Networking, Information Systems and Security. New York: ACM, 2020: No.46.
|
| [27] |
MIRRASHID M, NADERPOUR H. Transit search: an optimization algorithm based on exoplanet exploration[J]. Results in Control and Optimization, 2022, 7: No.100127.
|
| [28] |
CHENG Y, ANWAR A, DUAN X. Analyzing Alibaba’s co-located datacenter workloads[C]// Proceedings of the 2018 IEEE International Conference on Big Data. Piscataway: IEEE, 2018: 292-297.
|