《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (4): 1318-1322.DOI: 10.11772/j.issn.1001-9081.2022030425
所属专题: 前沿与综合应用
• 前沿与综合应用 • 上一篇
Haiyu YANG, Wenpu GUO(), Kai KANG
摘要:
针对信号调制方式识别计算复杂度高、低信噪比(SNR)条件下识别率较低、网络结构相对单一的问题,提出一种基于卷积长短时深度神经网络(CLDNN)的信号调制方式识别方法。首先,采用基准开源数据集RadioML2016.10a,对该数据集做同相正交(I/Q)数据转换,并将得到的结果作为网络输入;其次,构建CLDNN模型,模型分为三层卷积神经网络(CNN)、两层长短期记忆(LSTM)网络和两层全连接网络(FCN);最后,对所提模型进行训练及测试,得到分类结果。实验结果表明,对11种信号在不同SNR下进行调制方式识别时,与现有的单一网络结构模型如残差神经网络(RES)模型、CNN模型和残差生成对抗网络(RES-GAN)模型进行对比,随着SNR的提升,CLDNN模型的识别准确率也随之提高,且CLDNN模型的识别准确率均高于其他3种对比模型,当SNR在4 dB以上时,达到了92%。
中图分类号: