| [1] |
SIMON S, DUBRAVKO C, MICHELE B, et al. Soil monitoring for precision farming using hyperspectral remote sensing and soil sensors [J]. at — Automatisierungstechnik, 2021, 69(4): 325-335.
|
| [2] |
GAO Y. Study on applications of reversible information hiding algorithms based on discrete cosine transform coefficient and frequency band selection in JPEG image encryption[J]. Automatic Control and Computer Sciences, 2024, 58(2): 216-225.
|
| [3] |
潘兆杰,孙根云,张爱竹,等. 基于波段选择的烟草病害检测模型[J]. 光谱学与光谱分析, 2023, 43(4): 1023-1029.
|
|
PAN Z J, SUN G Y, ZHANG A Z, et al. Tobacco disease detection model based on band selection[J]. Spectroscopy and Spectral Analysis, 2023, 43(4): 1023-1029.
|
| [4] |
王志成. 基于Jeffries‑Matusita距离的遥感影像最优对象构建分类算法及应用研究[D]. 烟台:中国科学院大学(中国科学院烟台海岸带研究所), 2021: 22-25.
|
|
WANG Z C. Studies on remote sensing image optimal object construction classification algorithm based on Jeffries‑Matusita distance and its application [D]. Yantai: University of Chinese Academy of Sciences (Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences), 2021: 22-25.
|
| [5] |
崔锦涛,买买提·沙吾提. 基于特征波段选择和机器学习的陆地棉叶片水分估算[J]. 干旱区地理, 2023, 46(11): 1836-1847.
|
|
CUI J T, SAWUT M. Estimation of leaf content in upland cotton based on feature band selection and machine learning[J]. Arid Land Geography, 2023, 46(11): 1836-1847.
|
| [6] |
TANG H, ZHANG Y, ZHANG P, et al. An automatic band selection algorithm based on connection centre evolution[J]. Remote Sensing Letters, 2023, 14(4): 323-333.
|
| [7] |
SOLTANI O, BENABDELKADER S. Euclidean distance versus Manhattan distance for new representative SFA skin samples for human skin segmentation[J]. Traitement du Signal, 2021, 38(6): 1843-1851.
|
| [8] |
FU C, JIANG C, WAN Z, et al. A robust distributed fault detection scheme for interconnected systems based on subspace identification technique[J]. Control Engineering Practice, 2025, 159: No.106301.
|
| [9] |
吴青,徐杰. 基于马氏距离聚类的高光谱图像波段选择方法[J]. 西安邮电大学学报, 2023, 28(2): 39-49.
|
|
WU Q, XU J. Band selection method for hyperspectral images based on Mahalanobis distance clustering[J]. Journal of Xi’an University of Posts and Telecommunications, 2023, 28(2): 39-49.
|
| [10] |
吴德刚,赵利平,陈乾辉. 基于近红外光谱的大枣成熟度无损检测方法[J]. 激光杂志, 2023, 44(7): 212-217.
|
|
WU D G, ZHAO L P, CHEN Q H. Nondestructive detection method of jujube maturity based on near infrared spectroscopy[J]. Laser Journal, 2023, 44(7): 212-217.
|
| [11] |
李朝锋,王振,陈晨,等. 基于涡旋光场水下激光雷达空间滤波技术研究[J]. 光学技术, 2023, 49(2): 211-214.
|
|
LI C F, WANG Z, CHEN C, et al. A spatial filtering technology in underwater lidar based on vortex light field[J]. Optical Technique, 2023, 49(2): 211-214.
|
| [12] |
LI T. Planting structure adjustment and layout optimization of feed grain and food grain in China based on productive potentials[J]. Land, 2023, 12(1): No.45.
|
| [13] |
王春阳,张合兵,许志方,等. 矩阵因子和信息散度融合的高光谱波段选择方法[J]. 遥感信息, 2018, 33(2): 26-32.
|
|
WANG C Y, ZHANG H B, XU Z F, et al. A new band selection method for hyperspectral images based on matrix mode and spectral information divergence[J]. Remote Sensing Information, 2018, 33(2): 26-32.
|
| [14] |
高梦洁,陈方,王雷,等. 基于马尔科夫随机场的PLANET高分影像滑坡提取研究[J]. 遥感技术与应用, 2023, 38(5): 1180-1191.
|
|
GAO M J, CHEN F, WANG L, et al. Research on extraction of landslide from PLANET high spatial resolution remote sensing image based on Markov random field[J]. Remote Sensing Technology and Application, 2023, 38(5): 1180-1191.
|
| [15] |
SPYROPOULOU M Z, BENTHAM J. Scaling priors for intrinsic Gaussian Markov random fields applied to blood pressure data[J]. Statistica Neerlandica, 2024, 78(3): 491-504.
|
| [16] |
DELL’APA A, PENNINO M G, BANGLEY C W, et al. A hierarchical Bayesian modeling approach for the habitat distribution of smooth dogfish by sex and season in inshore coastal waters of the U.S. northwest Atlantic[J]. Marine and Coastal Fisheries, 2018, 10(6): 590-605.
|
| [17] |
于浩洋,董春,张辉. 融合空间信息和高光谱影像的四旁树自动提取方法[J]. 测绘通报, 2023(2):65-71.
|
|
YU H Y, DONG C, ZHANG H. Automatic extraction of four-side trees based on fusion of spatial information and hyperspectral image[J]. Bulletin of Surveying and Mapping, 2023(2): 65-71.
|
| [18] |
MONTESINOS-LÓPEZ A, GUTIERREZ-PULIDO H, MONTESINOS-LÓPEZ O A, et al. Maximum a posteriori threshold genomic prediction model for ordinal traits[J]. G3: Genes|Genomes|Genetics, 2020, 10(11): 4083-4102.
|
| [19] |
CAI Z, FANG H, YANG J, et al. Application of hyperspectral band selection method based on deep reinforcement learning to low-value recyclable waste classification[J]. Process Safety and Environmental Protection, 2024, 192: 1138-1150.
|
| [20] |
ZHANG C, MA X, ZHANG A, et al. Novel discretized gravitational search algorithm for effective medical hyperspectral band selection[J]. Journal of the Franklin Institute, 2024, 361(18): No.107269.
|
| [21] |
陈艳拢,王晓岚,李恩,等. CEM的波段选择方法研究及应用[J]. 光谱学与光谱分析, 2020, 40(12): 3778-3783.
|
|
CHEN Y L, WANG X L, LI E, et al. Research and application of band selection method based on CEM[J]. Spectroscopy and Spectral Analysis, 2020, 40(12): 3778-3783.
|
| [22] |
KISHORE R K, SARADHI V G P, RAJYA L D. Spatial residual clustering and entropy based ranking for hyperspectral band selection[J]. European Journal of Remote Sensing, 2020, 53(S1): 82-92.
|
| [23] |
VAHIDI M, AGHAKHANI S, MARTÍN D, et al. Optimal band selection using evolutionary machine learning to improve the accuracy of hyper-spectral images classification: a novel migration-based particle swarm optimization[J]. Journal of Classification, 2023, 40(3): 552-587.
|
| [24] |
FENG L, TAN A H, LIM M H, et al. Band selection for hyperspectral images using probabilistic memetic algorithm[J]. Soft Computing, 2016, 20(12): 4685-4693.
|
| [25] |
LIU Y, ZHOU S, HAN W, et al. Convolutional neural network for hyperspectral data analysis and effective wavelengths selection[J]. Analytica Chimica Acta, 2019, 1086: 46-54.
|
| [26] |
TIAN H, LI M, WANG Y, et al. Optical wavelength selection for portable hemoglobin determination by near-infrared spectroscopy method[J]. Infrared Physics and Technology, 2017, 86: 98-102.
|
| [27] |
AGHAEE R, MOMENI M, MOALLEM P. A fusion-based approach to improve hyperspectral images’ classification using metaheuristic band selection[J]. Applied Soft Computing, 2023, 148: No.110753.
|
| [28] |
GIRI R N, JANGHEL R R, PANDEY S K. Band selection using hybridization of particle swarm optimization and crow search algorithm for hyperspectral data classification[J]. Multimedia Tools and Applications, 2024, 83(9): 26901-26927.
|
| [29] |
CHEN B, YANG J, TANG H, et al. Optimization of flexible rotor for ultrasonic motor based on response surface and genetic algorithm[J]. Micromachines, 2024, 16(1): No.54.
|
| [30] |
DOS SANTOS CANOVA L, VALLESE F D, PISTONESI M F, et al. An improved successive projections algorithm version to variable selection in multiple linear regression[J]. Analytica Chimica Acta, 2023, 1274: No.341560.
|
| [31] |
WANG H, LIU B, ZHAO H, et al. Improving density peak clustering on multi-dimensional time series: rediscover and subdivide[J]. Knowledge and Information Systems, 2025, 67(2): 1573-1596.
|