[1] |
GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[M]// KAHLEN F J, FLUMERFELT S, ALVES A A. Transdisciplinary perspectives on complex systems: new findings and approaches. Cham: Springer, 2017: 85-113.
|
[2] |
REDELINGHUYS A J H, BASSON A H, KRUGER K. A six-layer architecture for the digital twin: a manufacturing case study implementation[J]. Journal of Intelligent Manufacturing, 2020, 31(6): 1383-1402.
|
[3] |
LAMB K. Principle-based digital twins: a scoping review[EB/OL]. [2024-06-11]..
|
[4] |
THERRIEN J D, NICOLAÏ N, VANROLLEGHEM P A. A critical review of the data pipeline: how wastewater system operation flows from data to intelligence[J]. Water Science and Technology, 2020, 82(12): 2613-2634.
|
[5] |
BEKKER A. Exploring the blue skies potential of digital twin technology for a polar supply and research vessel[M]. London: CRC Press, 2018: 135-145.
|
[6] |
GLAESSGEN E H, STARGEL D S. The digital twin paradigm for future NASA and US Air Force vehicles[C]// Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Reston, VA: AIAA, 2012: No.1818.
|
[7] |
LUTZE R. Digital twins in eHealth -: prospects and challenges focussing on information management[C]// Proceedings of the 2019 IEEE International Conference on Engineering, Technology and Innovation. Piscataway: IEEE, 2019: 1-9.
|
[8] |
陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1):1-18.
|
|
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
|
[9] |
LUO W, HU T, ZHANG C, et al. Digital twin for CNC machine tool: modeling and using strategy[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1129-1140.
|
[10] |
ZHANG H, QI Q, TAO F. A multi-scale modeling method for digital twin shop-floor[J]. Journal of Manufacturing Systems, 2022, 62: 417-428.
|
[11] |
仇晓黎,朱睿,幸研,等. 螺线管装配生产线数字孪生建模技术[J]. 计算机集成制造系统, 2022, 28(6): 1696-1703.
|
|
QIU X L, ZHU R, XING Y, et al. Digital twin modeling technology of solenoid assembly line[J]. Computer Integrated Manufacturing Systems, 2022, 28(6): 1696-1703.
|
[12] |
SONG J, LIU S, MA T, et al. Resilient digital twin modeling: a transferable approach[J]. Advanced Engineering Informatics, 2023, 58: No.102148.
|
[13] |
ZHANG J, CUI H, YANG A L, et al. An intelligent digital twin system for paper manufacturing in the paper industry[J]. Expert Systems with Applications, 2023, 230: No.120614.
|
[14] |
DING Y, ZHANG Y, HUANG X. Intelligent emergency digital twin system for monitoring building fire evacuation[J]. Journal of Building Engineering, 2023, 77: No.107416.
|
[15] |
CIAVOTTA M, MASO G D, ROVERE D, et al. Towards the digital factory: a microservices-based middleware for real-to-digital synchronization[M]. Cham: Springer, 2020: 273-297.
|
[16] |
PERNICI B, PLEBANI P, MECELLA M, et al. AgileChains: agile supply chains through smart digital twins[C]// Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference. Singapore: Research Publishing, 2020: 2678-2684.
|
[17] |
LONGO F, NICOLETTI L, PADOVANO A. Ubiquitous knowledge empowers the smart factory: the impacts of a service-oriented digital twin on enterprises’ performance[J]. Annual Reviews in Control, 2019, 47: 221-236.
|
[18] |
ATALAY M. A service-oriented digital twins framework for smart grid management[C]// Proceedings of the 2022 International Workshop on Secure and Reliable Microservices and Containers. Piscataway: IEEE, 2022: 9-17.
|
[19] |
ZHANG Q, WEI Y, LIU Z, et al. A framework for service-oriented digital twin systems for discrete workshops and its practical case study[J]. Systems, 2023, 11(3): No.156.
|
[20] |
ZHU L, BASS L, CHAMPLIN-SCHARFF G. DevOps and its practices[J]. IEEE Software, 2016, 33(3): 32-34.
|
[21] |
EBERT C, GALLARDO G, HERNANTES J, et al. DevOps[J]. IEEE Software, 2016, 33(3): 94-100.
|
[22] |
ERETH J. DataOps: towards a definition[C]// Proceedings of the 2018 Conference “Lernen, Wissen, Daten, Analysen”. Aachen: CEUR-WS.org, 2018: 104-112.
|
[23] |
RODRIGUEZ M, DE ARAÚJO L J P, MAZZARA M. Good practices for the adoption of DataOps in the software industry[J]. Journal of Physics: Conference Series, 2020, 1694: No.012032.
|
[24] |
KREUZBERGER D, KÜHL N, HIRSCHL S. Machine Learning Operations (MLOps): overview, definition, and architecture[EB/OL]. [2024-06-10]. .
|
[25] |
JOHN M M, OLSSON H H, BOSCH J. Towards MLOps: a framework and maturity model[C]// Proceedings of the 47th Euromicro Conference on Software Engineering and Advanced Applications. Piscataway: IEEE, 2021: 1-8.
|
[26] |
MA S P, FAN C Y, CHUANG Y, et al. Graph-based and scenario-driven microservice analysis, retrieval, and testing[J]. Future Generation Computer Systems, 2019, 100: 724-735.
|