计算机应用 ›› 2011, Vol. 31 ›› Issue (06): 1671-1674.DOI: 10.3724/SP.J.1087.2011.01671

• 数据库技术 • 上一篇    下一篇

中文名词性谓词语义角色标注的特征研究

徐靖1,2,李军辉1,2,朱巧明1,2,李培峰1,2   

  1. 1. 江苏省计算机信息处理技术重点实验室,江苏 苏州 215006
    2. 苏州大学 计算机科学与技术学院,江苏 苏州 215006
  • 收稿日期:2010-12-17 修回日期:2011-01-20 发布日期:2011-06-20 出版日期:2011-06-01
  • 通讯作者: 徐靖
  • 作者简介:徐靖(1986-),男,江苏苏州人,硕士研究生,主要研究方向:自然语言处理;
    李军辉(1983-),男,江苏苏州人,博士研究生,主要研究方向:自然语言处理;
    朱巧明(1963-),男,江苏苏州人,教授,博士生导师,主要研究方向:中文信息处理、网络挖掘;
    李培峰(1971-),男,江苏苏州人,副教授,主要研究方向:中文信息处理。
  • 基金资助:
    国家自然科学基金资助项目;江苏省自然科学基金资助项目;江苏省高校自然科学重大基础研究项目

Features for semantic role labeling of nominal predicates in Chinese

XU Jing1,2,LI Junhui1,2,ZHU Qiaoming1,2,LI Peifeng1,2   

  1. 1. Key Laboratory of Computer Information Processing Technology of Jiangsu Province,Suzhou Jiangsu 215006,China
    2. School of Computer Science and Technology,Soochow University,Suzhou Jiangsu 215006,China
  • Received:2010-12-17 Revised:2011-01-20 Online:2011-06-20 Published:2011-06-01
  • Contact: XU Jing

摘要: 在语义角色标注中,相对于动词性谓词,名词性谓词与其角色之间的结构更灵活和复杂。为了更好地捕获这些结构化信息,通过对名词性谓词语义角色标注相关特征集的研究,探索了新的单词特征和句法特征,用于名词性谓词语义角色标注。基于正确句法树和正确谓词识别,中文名词性谓词语义角色标注的F1值达到了73.99,优于目前国内外的同类系统;基于自动句法树和自动谓词识别,性能F1值为57.16。最后,讨论了使用动词性谓词的特征实例来提高名词性谓词SRL的准确率,然而性能的提高并不是很明显。

关键词: 语义角色标注, 特征, 动词性谓词, 名词性谓词, 结构化信息

Abstract: Compared to verbal predicates,the structure between nominal predicates and their roles in Semantic Role Labeling (SRL) is more flexible and complex. In this paper, some new word-related and syntactic features were explored from various nominal predicate-specific features to capture the structure information for nominal SRL. The experimental results show that the proposed nominal SRL system achieved the performance of 73.99 in F1-measure on gold parse trees and gold predicates, and outperformed the state-of-the-art nominal SRL. However, the performance dropped to 57.16 in F1-measure on automatic parse trees and automatic predicates. Finally, the training data were augmented with verbal SRL instances to examine whether nominal SRL could benefit from verbal instances. The experimental result show, however, adding verbal SRL instances does indeed improve the performance of nominal SRL, although the improvement is not statistically significant.

Key words: Semantic Role Labeling (SRL), feature, verbal predicate, nominal predicate, structure information