计算机应用 ›› 2011, Vol. 31 ›› Issue (07): 1793-1796.DOI: 10.3724/SP.J.1087.2011.01793
苏义鑫,沈俊,张丹红,胡孝芳
Yi-xin SU,Jun SHEN,Dan-hong ZHANG,Xiao-fang HU
摘要: 提出了一种基于神经网络与改进粒子群算法的地震预测方法,该方法采用前向神经网络作为地震震级的预测模型,引入改进的粒子群算法对前向网络的连接权值进行修正。为了设计在全局搜索和局部搜索之间取得最佳平衡的惯性权重,基于粒子动态变异思想对粒子群优化算法进行改进,提出了一种动态变异粒子群优化算法,并将其应用于地震震级预测神经网络模型优化。在仿真实验中,将所提出的方法与另外两个采用不同算法的前向网络预测方法进行了比较。结果表明所提出的优化算法收敛速度最快,所得模型的预测误差最小,泛化能力最强,对地震的中期预测有很好的参考作用。