《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (2): 474-483.DOI: 10.11772/j.issn.1001-9081.2022010001
所属专题: 先进计算
马学森1,2(), 许雪梅1,2, 蒋功辉1,2, 乔焰1,2, 周天保1,2
收稿日期:
2022-01-05
修回日期:
2022-03-17
接受日期:
2022-03-21
发布日期:
2023-02-08
出版日期:
2023-02-10
通讯作者:
马学森
作者简介:
许雪梅(1998—),女,安徽合肥人,硕士研究生,主要研究方向:云计算、移动边缘计算基金资助:
Xuesen MA1,2(), Xuemei XU1,2, Gonghui JIANG1,2, Yan QIAO1,2, Tianbao ZHOU1,2
Received:
2022-01-05
Revised:
2022-03-17
Accepted:
2022-03-21
Online:
2023-02-08
Published:
2023-02-10
Contact:
Xuesen MA
About author:
XU Xuemei, born in 1998, M. S. candidate. Her research interests include cloud computing, mobile edge computing.Supported by:
摘要:
针对具有截止期的云工作流完成时间与执行成本冲突的问题,提出一种混合自适应粒子群工作流调度优化算法(HAPSO)。首先,基于截止期建立有向无环图(DAG)云工作流调度模型;然后,通过范数理想点与自适应权重的结合,将DAG调度模型转化为权衡DAG完成时间和执行成本的多目标优化问题;最后,在粒子群优化(PSO)算法的基础上引入自适应惯性权重、自适应学习因子、花朵授粉算法的概率切换机制、萤火虫算法(FA)和粒子越界处理方法,从而平衡粒子群的全局搜索与局部搜索能力,进而求解DAG完成时间与执行成本的目标优化问题。实验中对比分析了PSO、惯性权重粒子群算法(WPSO)、蚁群算法(ACO)和HAPSO的优化结果。实验结果表明,HAPSO在权衡工作流(30~300任务数)完成时间与执行成本的多目标函数值上降低了40.9%~81.1%,HAPSO在工作流截止期约束下有效权衡了完成时间与执行成本。此外,HAPSO在减少完成时间或降低执行成本的单目标上也有较好的效果,验证了HAPSO的普适性。
中图分类号:
马学森, 许雪梅, 蒋功辉, 乔焰, 周天保. 混合自适应粒子群工作流调度优化算法[J]. 计算机应用, 2023, 43(2): 474-483.
Xuesen MA, Xuemei XU, Gonghui JIANG, Yan QIAO, Tianbao ZHOU. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling[J]. Journal of Computer Applications, 2023, 43(2): 474-483.
任务 | 位置 | 虚拟机编号 | 任务 | 位置 | 虚拟机编号 |
---|---|---|---|---|---|
t1 | 2.4 | 2 | t4 | 6.7 | 2 |
t2 | 7.1 | 3 | t5 | 3.5 | 3 |
t3 | 5.3 | 1 | t6 | 4.2 | 0 |
表1 粒子编码
Tab. 1 Particle coding
任务 | 位置 | 虚拟机编号 | 任务 | 位置 | 虚拟机编号 |
---|---|---|---|---|---|
t1 | 2.4 | 2 | t4 | 6.7 | 2 |
t2 | 7.1 | 3 | t5 | 3.5 | 3 |
t3 | 5.3 | 1 | t6 | 4.2 | 0 |
实体类型 | 参数 | 值 |
---|---|---|
任务 | 指令长度 | 5 000~15 000 |
任务总数 | 30~300 | |
虚拟机 | 虚拟机总数 | 15 |
处理速度/MIPS | 50~2 000 | |
带宽/(Mb·s-1) | 500~1 000 | |
执行单位成本 | 0.34~0.7 | |
传输单位成本 | 0.3 | |
CPU核心数 | 1~5 | |
数据中心 | 数据中心数 | 2 |
主机数 | 4 |
表2 云仿真器参数设置
Tab. 2 Parameter setting of cloud simulator
实体类型 | 参数 | 值 |
---|---|---|
任务 | 指令长度 | 5 000~15 000 |
任务总数 | 30~300 | |
虚拟机 | 虚拟机总数 | 15 |
处理速度/MIPS | 50~2 000 | |
带宽/(Mb·s-1) | 500~1 000 | |
执行单位成本 | 0.34~0.7 | |
传输单位成本 | 0.3 | |
CPU核心数 | 1~5 | |
数据中心 | 数据中心数 | 2 |
主机数 | 4 |
算法 | 参数名 | 参数值 |
---|---|---|
HAPSO | 惯性因子 | wmax=0.9, wmin=0.5 |
学习因子 | c1,c2∈[0.5, 2.5] | |
WPSO | 惯性因子 | wmax=0.9, wmin=0.5 |
学习因子 | c1=c2=2.0 | |
PSO | 惯性因子 | w=0.9 |
学习因子 | c1=c2=2.0 | |
ACO | 信息素浓度重要程度 | α=0.3 |
启发因子重要程度 | β=1.0 | |
信息素挥发因子 | ρ=0.4 |
表3 算法参数设置
Tab. 3 Parameter setting of algorithms
算法 | 参数名 | 参数值 |
---|---|---|
HAPSO | 惯性因子 | wmax=0.9, wmin=0.5 |
学习因子 | c1,c2∈[0.5, 2.5] | |
WPSO | 惯性因子 | wmax=0.9, wmin=0.5 |
学习因子 | c1=c2=2.0 | |
PSO | 惯性因子 | w=0.9 |
学习因子 | c1=c2=2.0 | |
ACO | 信息素浓度重要程度 | α=0.3 |
启发因子重要程度 | β=1.0 | |
信息素挥发因子 | ρ=0.4 |
算法 | 初始值 | 寻优结果 | 收敛迭代次数 |
---|---|---|---|
HAPSO | 0.035 21 | 0.000 02 | 26 |
WPSO | 75.904 90 | 5.932 38 | 35 |
PSO | 86.800 86 | 13.678 17 | 130 |
ACO | 1.412 11 | 0.000 75 | 127 |
表4 算法收敛性对比
Tab. 4 Comparison of convergence among algorithms
算法 | 初始值 | 寻优结果 | 收敛迭代次数 |
---|---|---|---|
HAPSO | 0.035 21 | 0.000 02 | 26 |
WPSO | 75.904 90 | 5.932 38 | 35 |
PSO | 86.800 86 | 13.678 17 | 130 |
ACO | 1.412 11 | 0.000 75 | 127 |
1 | LIU X F, ZHAN Z H, DENG J D, et al. An energy efficient ant colony system for virtual machine placement in cloud computing [J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 113-128. 10.1109/TEVC.2016.2623803 |
2 | ISMAYILOV G, TOPCUOGLU H R. Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing [J]. Future Generation Computer Systems, 2020, 102: 307-322. 10.1016/j.future.2019.08.012 |
3 | TAGHINEZHAD-NIAR A, PASHAZADEH S, TAHERI J. Workflow scheduling of scientific workflows under simultaneous deadline and budget constraints [J]. Cluster Computing, 2021, 24(4):3449-3467. 10.1007/s10586-021-03314-3 |
4 | MOHAMMADZADEH A, MASDARI M, GHAREHCHOPOGH F S. Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm [J]. Journal of Network and Systems Management, 2021, 29(3): No.31. 10.1007/s10922-021-09599-4 |
5 | 李启锐,彭心怡. 基于深度强化学习的云作业调度及仿真研究[J]. 系统仿真学报, 2022, 34(2):258-268. 10.16182/j.issn1004731x.joss.21-0337 |
LI Q R, PENG X Y. Job scheduling and simulation in cloud based on deep reinforcement learning[J]. Journal of System Simulation, 2022, 34(2):258-268. 10.16182/j.issn1004731x.joss.21-0337 | |
6 | HAN P C, DU C L, CHEN J C, et al. Cost and makespan scheduling of workflows in clouds using list multi-objective optimization technique[J]. Journal of Systems Architecture, 2021, 112: No.101837. 10.1016/j.sysarc.2020.101837 |
7 | ALKAYAL E S, JENNINGS N R, ABULKHAIR M F. Efficient task scheduling multi-objective particle swarm optimization in cloud computing[C]// Proceedings of the IEEE 41st Conference on Local Computer Networks Workshops. Piscataway: IEEE, 2016: 17-24. 10.1109/lcn.2016.024 |
8 | 童钊,邓小妹,陈洪剑,等. 云环境下基于强化学习的多目标任务调度算法[J]. 小型微型计算机系统, 2020, 41(02): 285-290. 10.3969/j.issn.1000-1220.2020.02.010 |
TONG Z, DENG X M, CHEN H J, et al. Multi-objective task scheduling algorithm based on reinforcement learning in cloud environments[J]. Journal of Chinese Computer Systems, 2020, 41(2): 285-290. 10.3969/j.issn.1000-1220.2020.02.010 | |
9 | CHAKRAVARTHI K K, SHYAMALA L, VAIDEHI V. Cost-effective workflow scheduling approach on cloud under deadline constraint using firefly algorithm[J]. Applied Intelligence, 2021, 51(3): 1629-1644. 10.1007/s10489-020-01875-1 |
10 | GUO P Z, XUE Z. An adaptive PSO-based real-time workflow scheduling algorithm in cloud systems[C]// Proceedings of the 17th IEEE International Conference on Communication Technology. Piscataway: IEEE, 2017: 1932-1936. 10.1109/icct.2017.8359966 |
11 | JIA Y H, CHEN W N, YUAN H Q, et al. An intelligent cloud workflow scheduling system with time estimation and adaptive ant colony optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1):634-649. 10.1109/tsmc.2018.2881018 |
12 | 董明刚,范培,闭玉申,等. 面向虚拟化云数据中心的工作流联合调度算法研究[J]. 小型微型计算机系统, 2021, 42(6):1152-1157. 10.3969/j.issn.1000-1220.2021.06.005 |
DONG M G, FAN P, BI Y S, et al. Research on joint workflows scheduling algorithm for virtualized cloud data centers[J]. Journal of Chinese Computer Systems, 2021, 42(6): 1152-1157. 10.3969/j.issn.1000-1220.2021.06.005 | |
13 | 孙长亚,王向文. 基于MGA-PSO的云计算多目标任务调度[J]. 计算机应用与软件, 2021, 38(6):212-218. 10.3969/j.issn.1000-386x.2021.06.034 |
SUN C Y, WANG X W. Multi-objective task scheduling of cloud computing based on MGA-PSO[J]. Computer Applications and Software, 2021, 38(6): 212-218. 10.3969/j.issn.1000-386x.2021.06.034 | |
14 | 方伯芃,孙林夫. 面向QoS与成本感知的云工作流调度优化[J]. 计算机集成制造系统, 2018, 24(2):331-348. 10.13196/j.cims.2018.01.006 |
FANG B P, SUN L F. Cloud workflow scheduling optimization oriented to QoS and cost-awareness[J]. Computer Integrated Manufacturing Systems, 2018, 24(2): 331-348. 10.13196/j.cims.2018.01.006 | |
15 | REHMAN A, JAVED K, BABRI H A, et al. Selection of the most relevant terms based on a max-min ratio metric for text classification[J]. Expert Systems with Applications, 2018, 114: 78-96. 10.1016/j.eswa.2018.07.028 |
16 | TOPCUOGLU H, HARIRI S, WU M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3): 260-274. 10.1109/71.993206 |
17 | VISHNU B A, JEVITHA K P. Prediction of cross-site scripting attack using machine learning algorithms[C]// Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing. New York: ACM, 2014: No.55. 10.1145/2660859.2660969 |
18 | 孙敏,叶侨楠,陈中雄. 云环境下方差定向变异遗传算法的任务调度[J]. 计算机应用, 2019, 39(11):3328-3332. 10.11772/j.issn.1001-9081.2019040635 |
SUN M, YE Q N, CHEN Z X. Task scheduling of variance-directional variation genetic algorithm in cloud environment[J]. Journal of Computer Applications, 2019, 39(11):3328-3332. 10.11772/j.issn.1001-9081.2019040635 | |
19 | 罗斌,于波. 移动边缘计算中基于粒子群优化的计算卸载策略[J]. 计算机应用, 2020, 40(8):2293-2298. 10.11772/j.issn.1001-9081.2019122200 |
LUO B, YU B. Computation offloading strategy based on particle swarm optimization in mobile edge computing[J]. Journal of Computer Applications, 2020, 40(8): 2293-2298. 10.11772/j.issn.1001-9081.2019122200 | |
20 | 张晓丽. 自适应CPSO算法在云计算任务调度中的应用[J]. 计算机技术与发展, 2016, 26(8):161-165. 10.3969/j.issn.1673-629X.2016.08.034 |
ZHANG X L. Application of self-adaptive chaos particle swarm optimization in task scheduling for cloud computing[J]. Computer Technology and Development, 2016, 26(8): 161-165. 10.3969/j.issn.1673-629X.2016.08.034 | |
21 | 李学俊,徐佳,王福田,等. 云工作流系统中能耗感知的任务调度算法[J]. 模式识别与人工智能, 2016, 29(9):790-796. 10.16451/j.cnki.issn1003-6059.201609003 |
LI X J, XU J, WANG F T, et al. Energy aware task scheduling algorithm in cloud workflow system[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(9): 790-796. 10.16451/j.cnki.issn1003-6059.201609003 | |
22 | 王宏欣,张跃. 带截止期约束的多模态云服务工作流调度[J]. 小型微型计算机系统, 2016, 37(11):2437-2442. 10.3969/j.issn.1000-1220.2016.11.010 |
WANG H X, ZHANG Y. Scheduling method for multi-mode cloud workflows with deadlines[J]. Journal of Chinese Computer Systems, 2016, 37(11): 2437-2442. 10.3969/j.issn.1000-1220.2016.11.010 | |
23 | 冉家敏,倪志伟,彭鹏,等. 考虑空间众包工作者服务质量的任务分配策略及其萤火虫群优化算法求解[J]. 计算机应用, 2021, 41(3): 794-802. 10.11772/j.issn.1001-9081.2020060940 |
RAN J M, NI Z W, PENG P, et al. Task allocation strategy considering service quality of spatial crowdsourcing workers and its glowworm swarm optimization algorithm solution[J]. Journal of Computer Applications, 2021, 41(3): 794-802. 10.11772/j.issn.1001-9081.2020060940 | |
24 | BEEGOM A S A, RAJASREE M S. Integer⁃PSO: a discrete PSO algorithm for task scheduling in cloud computing systems[J]. Evolutionary Intelligence, 2019, 12(2): 227-239. 10.1007/s12065-019-00216-7 |
25 | 胡堂清,张旭秀,曹晓月. 一种动态调整惯性权重的混合粒子群算法[J]. 电光与控制, 2020, 27(6):16-21. 10.3969/j.issn.1671-637X.2020.06.004 |
HU T Q, ZHANG X X, CAO X Y. A hybrid particle swarm optimization with dynamic adjustment of inertial weight[J]. Electronics Optics and Control, 2020, 27(6): 16-21. 10.3969/j.issn.1671-637X.2020.06.004 | |
26 | 张晓莉,王秦飞,冀汶莉. 一种改进的自适应惯性权重的粒子群算法[J]. 微电子学与计算机, 2019, 36(3):66-70. |
ZHANG X L, WANG Q F, JI W L. An improved particle swarm optimization algorithm for adaptive inertial weights[J]. Microelectronics and Computer, 2019, 36(3): 66-70. | |
27 | 谈杰. 基于改进粒子群算法的云计算多目标任务调度问题研究[D].合肥:合肥工业大学, 2020:20-23. |
TAN J. Research on cloud computing multi-objective task scheduling problem based on improved particle swarm algorithm[D]. Hefei: Hefei University of Technology, 2020:20-23. | |
28 | 李建平,宫耀华,卢爱平,等. 改进的粒子群算法及在数值函数优化中应用[J]. 重庆大学学报, 2017, 40(5):95-103. 10.11835/j.issn.1000-582X.2017.05.012 |
LI J P, GONG Y H, LU A P, et al. Application of improved particle swarm algorithm to numerical function optimization[J]. Journal of Chongqing University, 2017, 40(5): 95-103. 10.11835/j.issn.1000-582X.2017.05.012 | |
29 | 卞京红,贺兴时,杨新社. 基于萤火虫算法的自适应花授粉优化算法[J]. 计算机工程与应用, 2016, 52(21):162-167, 217. 10.3778/j.issn.1002-8331.1603-0412 |
BIAN J H, HE X S, YANG X S. Hybrid algorithm of firefly algorithm and self-adaptive flower pollination algorithm[J]. Computer Engineering and Applications, 2016, 52(21):162-167, 217. 10.3778/j.issn.1002-8331.1603-0412 | |
30 | CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software: Practice and Experience, 2011, 41(1): 23-50. 10.1002/spe.995 |
[1] | 张英俊, 李牛牛, 谢斌红, 张睿, 陆望东. 课程学习指导下的半监督目标检测框架[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2326-2333. |
[2] | 高培根, 锁斌. 基于加权犹豫模糊集的实验设计与分阶段PSO-Kriging建模[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2144-2150. |
[3] | 李焱, 潘大志, 郑思情. 多车场带时间窗车辆路径问题的改良自适应大邻域搜索算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1897-1904. |
[4] | 张莞婷, 杜文莉, 堵威. 基于多时间尺度协同的大规模原油调度进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1355-1363. |
[5] | 姜涛, 梁振宇, 程然, 金耀初. GPU加速的演化算法求解多目标流水车间调度问题[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1364-1371. |
[6] | 赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1415-1422. |
[7] | 刘晓芳, 张军. 概率驱动的动态多目标多智能体协同调度进化优化[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1372-1377. |
[8] | 高麟, 周宇, 邝得互. 进化双层自适应局部特征选择[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1408-1414. |
[9] | 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1386-1392. |
[10] | 韦修喜, 彭茂松, 黄华娟. 基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1009-1017. |
[11] | 李欣, 保利勇, 丁洪伟, 官铮. 基于MEC服务器优先服务的路侧单元MAC层调度策略[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1227-1235. |
[12] | 李建强, 何舟. 面向多行程取送货车辆路径问题的混合NSGA-Ⅱ[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1187-1194. |
[13] | 杜晓昕, 周薇, 王浩, 郝田茹, 王振飞, 金梅, 张剑飞. 智能算法的亚群优化策略综述[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 819-830. |
[14] | 王震, 张珊珊, 邬斌扬, 苏万华. 基于自适应粒子群优化算法的串联复合涡轮储能优化策略[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 611-618. |
[15] | 马勇健, 史旭华, 王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 269-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||