《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (3): 819-830.DOI: 10.11772/j.issn.1001-9081.2023030380
杜晓昕(), 周薇, 王浩, 郝田茹, 王振飞, 金梅, 张剑飞
收稿日期:
2023-04-11
修回日期:
2023-06-06
接受日期:
2023-06-08
发布日期:
2023-07-12
出版日期:
2024-03-10
通讯作者:
杜晓昕
作者简介:
周薇(1999—),女,河北保定人,硕士研究生,主要研究方向:群智能优化算法基金资助:
Xiaoxin DU(), Wei ZHOU, Hao WANG, Tianru HAO, Zhenfei WANG, Mei JIN, Jianfei ZHANG
Received:
2023-04-11
Revised:
2023-06-06
Accepted:
2023-06-08
Online:
2023-07-12
Published:
2024-03-10
Contact:
Xiaoxin DU
About author:
ZHOU Wei, born in 1999, M. S. candidate. Her research interests include swarm intelligent optimization algorithm.Supported by:
摘要:
群智能算法的优化是提升群智能算法性能的一个主要途径,随着群智能算法越来越广泛地运用到各类模型优化、生产调度、路径规划等问题中,对智能算法性能的要求也越来越高。亚群策略作为一种优化群智能算法的重要手段,能够灵活地平衡算法的全局勘探能力和局部开发能力,已经成为群智能算法的研究热点之一。为了促进亚群优化策略的发展和应用,对动态亚群策略、基于主从范式的亚群策略和基于网络结构的亚群策略进行了详细调查,阐述了各类亚群策略的结构特点、改进方式和应用场景。最后,总结了亚群策略目前存在的问题以及未来的研究趋势和发展方向。
中图分类号:
杜晓昕, 周薇, 王浩, 郝田茹, 王振飞, 金梅, 张剑飞. 智能算法的亚群优化策略综述[J]. 计算机应用, 2024, 44(3): 819-830.
Xiaoxin DU, Wei ZHOU, Hao WANG, Tianru HAO, Zhenfei WANG, Mei JIN, Jianfei ZHANG. Survey of subgroup optimization strategies for intelligent algorithms[J]. Journal of Computer Applications, 2024, 44(3): 819-830.
策略 | 算法改进 | 算法分析 | 优化问题 |
---|---|---|---|
DMS-PSO[ | 引入动态亚群的概念,首次对PSO的拓扑结构进行动态变化,加强了算法的勘探能力,结构新颖可研究性强 | 较大计算成本,重组周期需要依据经验选择, 算法偏向勘探阶段,开发能力欠缺 | 流水车间调度 基准测试函数 |
DMS-L-PSO[ | 提出在局部使用BFGS加快算法收敛 | 勘探能力差,多模态问题上表现差 | 基准测试函数 |
DMS-PSO-CLS[ | 在DMS-PSO的亚群中使用竞争学习策略加快算法收敛 | 加强了开发能力,竞争机制复杂,计算成本高, 多模态问题上表现差 | 基准测试函数 |
MSPSO[ | 在DMS-PSO的基础上使用动态的亚群数量和重组周期,提出一种状态检测策略帮助粒子跳出局部最优 | 算法偏向勘探能力,开发能力欠缺, 计算成本高,算法复杂,单模态问题表现差 | 基准测试函数 |
NMSPSO[ | 定义了一个信息池来帮助粒子进行信息交流,使用两种不同的学习策略来保持算法的开发和勘探平衡 | 较小的计算成本,兼顾勘探和开发过程 | 基准测试函数 |
HCLDMS-PSO[ | 对DMS-PSO的多亚群权重进行改进 | 能自适应地调整权重参数,缺少有效的亚群合并策略 | 基准测试函数 |
APSO-DEE[ | 提出一种解耦勘探和开发的学习结构用于平衡算法的开发和勘探能力 | 勘探和开发互不影响,较好地保持了算法的平衡能力 | 基准测试函数 |
AHPS2[ | 在亚群中添加物竞天择的竞争机制 | 两个亚群间模拟自然界中的物种竞争,动态变化,算法适用性较好 | 基准测试函数 |
文献[ | 使用k均值聚类划分亚群 | k均值聚类划分的亚群相比固定的亚群数目更加切实准确,k值的选择较为困难 | 基准测试函数 |
表1 动态多亚群策略的改进
Tab. 1 Improvements of dynamic multi-subgroup strategies
策略 | 算法改进 | 算法分析 | 优化问题 |
---|---|---|---|
DMS-PSO[ | 引入动态亚群的概念,首次对PSO的拓扑结构进行动态变化,加强了算法的勘探能力,结构新颖可研究性强 | 较大计算成本,重组周期需要依据经验选择, 算法偏向勘探阶段,开发能力欠缺 | 流水车间调度 基准测试函数 |
DMS-L-PSO[ | 提出在局部使用BFGS加快算法收敛 | 勘探能力差,多模态问题上表现差 | 基准测试函数 |
DMS-PSO-CLS[ | 在DMS-PSO的亚群中使用竞争学习策略加快算法收敛 | 加强了开发能力,竞争机制复杂,计算成本高, 多模态问题上表现差 | 基准测试函数 |
MSPSO[ | 在DMS-PSO的基础上使用动态的亚群数量和重组周期,提出一种状态检测策略帮助粒子跳出局部最优 | 算法偏向勘探能力,开发能力欠缺, 计算成本高,算法复杂,单模态问题表现差 | 基准测试函数 |
NMSPSO[ | 定义了一个信息池来帮助粒子进行信息交流,使用两种不同的学习策略来保持算法的开发和勘探平衡 | 较小的计算成本,兼顾勘探和开发过程 | 基准测试函数 |
HCLDMS-PSO[ | 对DMS-PSO的多亚群权重进行改进 | 能自适应地调整权重参数,缺少有效的亚群合并策略 | 基准测试函数 |
APSO-DEE[ | 提出一种解耦勘探和开发的学习结构用于平衡算法的开发和勘探能力 | 勘探和开发互不影响,较好地保持了算法的平衡能力 | 基准测试函数 |
AHPS2[ | 在亚群中添加物竞天择的竞争机制 | 两个亚群间模拟自然界中的物种竞争,动态变化,算法适用性较好 | 基准测试函数 |
文献[ | 使用k均值聚类划分亚群 | k均值聚类划分的亚群相比固定的亚群数目更加切实准确,k值的选择较为困难 | 基准测试函数 |
策略 | 算法改进 | 算法分析 | 优化问题 |
---|---|---|---|
MCPSO[ | 首次提出应用于亚群策略的主从范式的拓扑结构 | 优点:计算成本低,算法的开发和勘探能力平衡 缺点:缺乏亚群之间的相互合作 | 非线性动力系统的模糊控制器 基准测试函数 |
SALMPSO[ | 在亚群之间和亚群内部使用两种不同层次的信息交互方式 | 优点:加速优质信息的流通,加快算法收敛 缺点:高维复杂的问题中寻优能力不足 | 基准测试函数 |
PMSO[ | 引入并行机制和随机初始化策略 | 优点:算法的开发能力强,在多模态问题上表现优秀 缺点:计算成本大 | 基准测试函数 |
PCLPSO[ | 定义信息池,提出贪婪信息交换策略 | 计算成本小,算法寻优速度快 | 基准测试函数 |
AMCPSO[ | 提出使用亚群竞争机制选择引导粒子 | 有效减缓精英引导时种群多样性快速下降的情况,能良好地处理大规模优化问题 | 基准测试函数 |
EGCSO[ | 提出使用熵辅助多样性检测方法 | 能保持种群多样性,使EGCSO在大规模优化问题上有很强竞争力 | 基准测试函数 |
WLMS-KMTOA[ | 提出双主群和弱连接多亚群结构 | 优点:能很好平衡算法的勘探和开发能力,有效保持种群多样性 缺点:高额的算法成本无法优化高维问题 | 基准测试函数 |
MCpPSO[ | 在亚群中引入一种基于中心信息的交换策略 | 能很好地保持种群多样性,勘探能力强 | 基准测试函数 |
MSLVPSO[ | 在亚群中引入Lotka-Volterra模型 | 优点:增加了粒子的多样性,使得MSLVPSO有较好的收敛精度和鲁棒性 缺点:收敛慢 | 基准测试函数 |
表2 对基于主从范式的多亚群策略的改进
Tab. 2 Improvements of multi-subgroup strategies based on master-slave paradigm
策略 | 算法改进 | 算法分析 | 优化问题 |
---|---|---|---|
MCPSO[ | 首次提出应用于亚群策略的主从范式的拓扑结构 | 优点:计算成本低,算法的开发和勘探能力平衡 缺点:缺乏亚群之间的相互合作 | 非线性动力系统的模糊控制器 基准测试函数 |
SALMPSO[ | 在亚群之间和亚群内部使用两种不同层次的信息交互方式 | 优点:加速优质信息的流通,加快算法收敛 缺点:高维复杂的问题中寻优能力不足 | 基准测试函数 |
PMSO[ | 引入并行机制和随机初始化策略 | 优点:算法的开发能力强,在多模态问题上表现优秀 缺点:计算成本大 | 基准测试函数 |
PCLPSO[ | 定义信息池,提出贪婪信息交换策略 | 计算成本小,算法寻优速度快 | 基准测试函数 |
AMCPSO[ | 提出使用亚群竞争机制选择引导粒子 | 有效减缓精英引导时种群多样性快速下降的情况,能良好地处理大规模优化问题 | 基准测试函数 |
EGCSO[ | 提出使用熵辅助多样性检测方法 | 能保持种群多样性,使EGCSO在大规模优化问题上有很强竞争力 | 基准测试函数 |
WLMS-KMTOA[ | 提出双主群和弱连接多亚群结构 | 优点:能很好平衡算法的勘探和开发能力,有效保持种群多样性 缺点:高额的算法成本无法优化高维问题 | 基准测试函数 |
MCpPSO[ | 在亚群中引入一种基于中心信息的交换策略 | 能很好地保持种群多样性,勘探能力强 | 基准测试函数 |
MSLVPSO[ | 在亚群中引入Lotka-Volterra模型 | 优点:增加了粒子的多样性,使得MSLVPSO有较好的收敛精度和鲁棒性 缺点:收敛慢 | 基准测试函数 |
1 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995, 4: 1942-1948. 10.1109/ICNN.1995.488968 |
2 | KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm [J]. Applied Soft Computing, 2008, 8(1): 687-697. 10.1016/j.asoc.2007.05.007 |
3 | YANG X-S. Firefly algorithms for multimodal optimization [C]// Proceedings of the 5th International Symposium on Stochastic Algorithms: Foundations and Applications. Berlin: Springer, 2009: 169-178. 10.1007/978-3-642-04944-6_14 |
4 | CHANDRASEKARAN K, SIMON S P. Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm [J]. Swarm and Evolutionary Computation, 2012, 5: 1-16. 10.1016/j.swevo.2012.01.001 |
5 | PAN W-T. A new fruit fly optimization algorithm: taking the financial distress model as an example [J]. Knowledge-Based Systems, 2012, 26:69-74. 10.1016/j.knosys.2011.07.001 |
6 | DUMAN E, UYSAL M, ALKAYA A F. Migrating birds optimization: a new metaheuristic approach and its performance on quadratic assignment problem [J]. Information Sciences, 2012, 217: 65-77. 10.1016/j.ins.2012.06.032 |
7 | MENG X-B, GAO X Z, LU L, et al. A new bio-inspired optimisation algorithm: bird swarm algorithm [J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28(4): 673-687. 10.1080/0952813x.2015.1042530 |
8 | WANG G G, DEB S, COELHO L. Elephant herding optimization[C]// Proceedings of the 3rd International Symposium on Computational and Business Intelligence. Piscataway: IEEE, 2015: 1-5. 10.1109/iscbi.2015.8 |
9 | SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: theory and application [J]. Advances in Engineering Software, 2017, 105:30-47. 10.1016/j.advengsoft.2017.01.004 |
10 | FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine predators algorithm: a nature-inspired metaheuristic [J]. Expert Systems with Applications, 2020, 152:113377. 10.1016/j.eswa.2020.113377 |
11 | MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-verse optimizer: a nature-inspired algorithm for global optimization [J]. Neural Computing and Applications, 2015, 27:495-513. 10.1007/s00521-015-1870-7 |
12 | SINDHU R, NGADIRAN R, YACOB Y M, et al. Sine-cosine algorithm for feature selection with elitism strategy and new updating mechanism [J]. Neural Computing and Applications, 2017, 28: 2947-2958. 10.1007/s00521-017-2837-7 |
13 | KAVEH A, DADRAS A. A novel meta-heuristic optimization algorithm: thermal exchange optimization [J]. Advances in Engineering Software, 2017, 110(C): 69-84. 10.1016/j.advengsoft.2017.03.014 |
14 | FARAMARZI A, HEIDARINEJAD M, STEPHENS B E, et al. Equilibrium optimizer: a novel optimization algorithm [J]. Knowledge-Based Systems, 2020, 191: 105190. 10.1016/j.knosys.2019.105190 |
15 | GOLDBERG D. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Boston: Addison-Wesley Longman, 1989: 25-29. 10.5860/choice.27-0936 |
16 | STORN R, PRICE K. Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341-359. 10.1023/a:1008202821328 |
17 | OMRAN M G H, MAHDAVI M. Global-best harmony search [J]. Applied Mathematics and Computation, 2008, 198(2):643-656. 10.1016/j.amc.2007.09.004 |
18 | PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. IEEE Control Systems Magazine, 2020, 22(3):52-67. |
19 | BLACKWELL T, BRANKE J. Multi-swarm optimization in dynamic environments [C]// Proceedings of the 2004 Workshops on Applications of Evolutionary Computation. Berlin: Springer, 2004:489-500. 10.1007/978-3-540-24653-4_50 |
20 | LIANG J J, SUGANTHAN P N. Dynamic multi-swarm particle swarm optimizer [C]// Proceedings of the 2005 IEEE Swarm Intelligence Symposium. Piscataway: IEEE, 2005:124-129. |
21 | LIANG J J, PAN Q-K, CHEN T, et al. Solving the blocking flow shop scheduling problem by a dynamic multi-swarm particle swarm optimizer [J]. International Journal of Advanced Manufacturing Technology, 2011, 55:755-762. 10.1007/s00170-010-3111-7 |
22 | ZHAO S Z, LIANG J J, SUGANTHAN P N, et al. Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization [C]// Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Piscataway: IEEE, 2008:3845-3852. 10.1109/cec.2008.4631320 |
23 | XU X, TANG Y, LI J, et al. Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy [J]. Applied Soft Computing, 2015, 29(C):169-183. 10.1016/j.asoc.2014.12.026 |
24 | XIA X, GUI L, ZHAN Z-H. A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting [J]. Applied Soft Computing, 2018, 67:126-140. 10.1016/j.asoc.2018.02.042 |
25 | XIONG H, QIU B, LIU J. An improved multi-swarm particle swarm optimizer for optimizing the electric field distribution of multichannel transcranial magnetic stimulation [J]. Artificial Intelligence in Medicine, 2020, 104: 101790. 10.1016/j.artmed.2020.101790 |
26 | WANG S, LIU G, GAO M, et al. Heterogeneous comprehensive learning and dynamic multi-swarm particle swarm optimizer with two mutation operators [J]. Information Sciences, 2020, 540: 175-200. 10.1016/j.ins.2020.06.027 |
27 | LI D, GUO W, LERCH A, et al. An adaptive particle swarm optimizer with decoupled exploration and exploitation for large scale optimization [J]. Swarm and Evolutionary Computation, 2021, 60:100789. 10.1016/j.swevo.2020.100789 |
28 | CHU X, HU M, WU T, et al. AHPS2: an optimizer using adaptive heterogeneous particle swarms [J]. Information Sciences, 2014, 280:26-52. 10.1016/j.ins.2014.04.043 |
29 | 刘道华, 胡秀云, 赵岩松,等. 一种动态分群带熵权的粒子群优化方法[J]. 西安电子科技大学学报(自然科学版), 2018, 45(6):69-74. |
LIU D H, HU X Y, ZHAO Y S, et al. Particle swarm optimization method based on dynamic sub-swarms with entropy weight [J]. Journal of Xidian University (Natural Science), 2018, 45(6):69-74. | |
30 | WU D, WANG G G. Employing reinforcement learning to enhance particle swarm optimization methods [J]. Engineering Optimization, 2022, 54(2): 329-348. 10.1080/0305215x.2020.1867120 |
31 | VERMA P, PAROUHA R P. An advanced hybrid algorithm for engineering design optimization [J]. Neural Processing Letters, 2021, 53: 3693-3733. 10.1007/s11063-021-10541-7 |
32 | ZHAO S-Z, SUGANTHAN P N, PAN Q-K, et al. Dynamic multi-swarm particle swarm optimizer with sub- regional harmony search[J]. Expert Systems with Applications, 2011, 38(4): 3735-3742. 10.1016/j.eswa.2010.09.032 |
33 | CHEN Y, LI L, PENG H, et al. Dynamic multi-swarm differential learning particle swarm optimizer [J]. Swarm and Evolutionary Computation, 2017, 39: 209-221. 10.1016/j.swevo.2017.10.004 |
34 | REVATHI M, JEYA I J S, DEEPA S N. Deep learning-based soft computing model for image classification application [J]. Soft Computing, 2020, 24: 18411-18430. 10.1007/s00500-020-05048-7 |
35 | ASGHARI K, MASDARI M, GHAREHCHOPOGH F S, et al. Multi-swarm and chaotic whale-particle swarm optimization algorithm with a selection method based on roulette wheel [J]. Expert Systems, 2021, 38(8): e12779. 10.1111/exsy.12779 |
36 | LIANG J J, CHAN C C. HUANG V L,et al. Improving the performance of a FBG sensor network using a novel dynamic multi-swarm particle swarm optimizer [C/OL]// Proceedings of SPIE 5998, Sensor for Harsh Environments Ⅱ [2023-03-01]. . |
37 | HU B, SUN J, DING L, et al. Dynamic equivalent modeling for small and medium hydropower generator group based on measurements [J]. Energies, 2016, 9(5):362. 10.3390/en9050362 |
38 | GUO G, HACKNEY D, PANKOW M, et al. Interrogation of a spectral profile division multiplexed FBG sensor network using a modified particle swarm optimization method [J]. Measurement Science & Technology, 2017, 28(5):055204. 10.1088/1361-6501/aa637f |
39 | GARCÍA-NIETO J, ALBA E. Parallel multi-swarm optimizer for gene selection in DNA microarrays [J]. Applied Intelligence, 2012, 37: 255-266. 10.1007/s10489-011-0325-9 |
40 | SONG L, SHI J, PAN A, et al. A dynamic multi-swarm particle swarm optimizer for multi-objective optimization of machining operations considering efficiency and energy consumption [J]. Energies, 2020, 13(10): 2616. 10.3390/en13102616 |
41 | LIU H, GU F, LIN Z. Auto-sharing parameters for transfer learning based on multi-objective optimization [J]. Integrated Computer-Aided Engineering, 2021, 28(3): 295-307. 10.3233/ica-210655 |
42 | BI L, CAO W, HU W, et al. Intelligent tuning of microwave cavity filters using granular multi-swarm particle swarm optimization [J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12901-12911. 10.1109/tie.2020.3040658 |
43 | YOUSRI D, HASANIEN H M, FATHY A. Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm [J]. Energy Conversion and Management, 2021, 228: 113692. 10.1016/j.enconman.2020.113692 |
44 | ZHANG J, XIA K, HE Z, et al. Dynamic multi-swarm differential learning quantum bird swarm algorithm and its application in random forest classification model [J]. Computational Intelligence and Neuroscience, 2020, 2020: 6858541. 10.1155/2020/6858541 |
45 | YIN S, LUO Q, ZHOU Y. IBMSMA: an indicator-based multi-swarm slime mould algorithm for multi-objective truss optimization problems [J]. Journal of Bionic Engineering, 2022, 20: 1333-1360. 10.1007/s42235-022-00307-9 |
46 | NIU B, ZHU Y, HE X, et al. MCPSO: a multi-swarm cooperative particle swarm optimizer [J]. Applied Mathematics and Computation, 2007, 185(2): 1050-1062. 10.1016/j.amc.2006.07.026 |
47 | NIU B, ZHU Y, HE X, et al. A multi-swarm optimizer based fuzzy modeling approach for dynamic systems processing [J]. Neurocomputing, 2008, 71(7/8/9): 1436-1448. 10.1016/j.neucom.2007.05.010 |
48 | NIU B, HUANG H, TAN L, et al. Symbiosis-based alternative learning multi-swarm particle swarm optimization [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(1): 4-14. 10.1109/tcbb.2015.2459690 |
49 | 李静,张仁崇,潘春燕,等.单目标概率约束规划的微种群免疫优化算法[J].北京航空航天大学学报, 2023, 49(3): 525-537. |
LI J, ZHANG R C, PAN C Y, et al. Micro immune optimization algorithm for single objective probabilistic constrained programming [J].Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 525-537. | |
50 | FAN S-K S, CHANG J-M. Dynamic multi-swarm particle swarm optimizer using parallel PC cluster systems for global optimization of large-scale multimodal functions [J]. Engineering Optimization, 2010, 42(5): 431-451. 10.1080/03052150903247736 |
51 | GÜLCÜ Ş, KODAZ H. A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization [J]. Engineering Applications of Artificial Intelligence, 2015, 45:33-45. 10.1016/j.engappai.2015.06.013 |
52 | KONG F, JIANG J, HUANG Y. An adaptive multi-swarm competition particle swarm optimizer for large-scale optimization[J]. Mathematics, 2019, 7(6): 521. 10.3390/math7060521 |
53 | LI W, GUO W, LI Y, et al. Multi-swarm competitive swarm optimizer for large-scale optimization by entropy-assisted diversity measurement and management [J]. Concurrency and Computation: Practice and Experience, 2021, 33(9): e6216. 10.1002/cpe.6126 |
54 | 范朝冬, 刘颖南, 章兢,等. 弱连接多子群分子动理论优化算法[J]. 控制理论与应用, 2019, 36(1):108-119. 10.7641/CTA.2018.70714 |
FAN C D, LIU Y N, ZHANG J, et al. A weak linked multi-subpopulation kinetic-molecular theory optimization theory [J]. Control Theory & Applications, 2019, 36(1): 108-119. 10.7641/CTA.2018.70714 | |
55 | ZHAO X, LIU Z, YANG X. A multi-swarm cooperative multistage perturbation guiding particle swarm optimizer [J]. Applied Soft Computing archive 2014, 22: 77-93. 10.1016/j.asoc.2014.04.042 |
56 | WU X, SUN M, XIAO C, et al. Empirical study of particle swarm optimization inspired by Lotka-Volterra model in Ecology [J]. Soft Computing, 2018, 23(11): 5571-5582. 10.1007/s00500-018-3215-9 |
57 | ZHANG Y, GONG D-W, DING Z-H. Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer [J]. Expert Systems with Applications, 2011, 38(11):13933-13941. |
58 | NICKABADI A, EBADZADEH M M, SAFABAKHSH R. A competitive clustering particle swarm optimizer for dynamic optimization problems [J]. Swarm Intelligence, 2012, 6:177-206. 10.1007/s11721-012-0069-0 |
59 | LI C, YANG S, YANG M. An adaptive multi-swarm optimizer for dynamic optimization problems [J]. Evolutionary Computation, 2014, 22(4):559-594. 10.1162/evco_a_00117 |
60 | UFNALSKI B, GRZESIAK L M. Plug-in direct particle swarm repetitive controller with a reduced dimensionality of a fitness landscape — a multi-swarm approach [J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2015, 63(4): 857-866. 10.1515/bpasts-2015-0098 |
61 | LIU R, LI J, FAN J, et al. A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization [J]. European Journal of Operational Research, 2017, 261(3): 1028-1051. 10.1016/j.ejor.2017.03.048 |
62 | QIN J, HUANG C, LUO Y. Adaptive multi-swarm in dynamic environments [J]. Swarm and Evolutionary Computation, 2021, 63: 100870. 10.1016/j.swevo.2021.100870 |
63 | GAO L, PAN Q-K. A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem [J]. Information Sciences, 2016, 372:655-676. 10.1016/j.ins.2016.08.046 |
64 | 王坚浩, 张亮, 史超,等. 基于入侵杂草蝙蝠双子群优化的装备保障编组协同任务规划[J]. 控制与决策, 2019, 34(7):1375-1384. |
WANG J H, ZHANG L, SHI C, et al. Cooperative task scheduling for equipment support groups using invasive weed bat dual-subgroup optimization algorithm [J]. Control and Decision, 2019, 34(7): 1375-1384. | |
65 | CHEN H, HEIDARI A A, ZHAO X, et al. Advanced orthogonal learning-driven multi-swarm sine cosine optimization [J]. Expert Systems with Applications, 2020, 144: 113113. 10.1016/j.eswa.2019.113113 |
66 | WANG M, CHEN H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis [J]. Applied Soft Computing, 2019, 88: 105946. 10.1016/j.asoc.2019.105946 |
67 | CHEN H, LI S, HEIDARI A A, et al. Efficient multi-population outpost fruit fly-driven optimizers: framework and advances in support vector machines [J]. Expert Systems with Applications, 2020, 142: 112999. 10.1016/j.eswa.2019.112999 |
68 | CHEN H, ZHU Y, HU K. Discrete and continuous optimization based on multi-swarm coevolution [J]. Natural Computing, 2010, 9: 659-682. 10.1007/s11047-009-9174-4 |
69 | SASAKI T, NAKANO H, MIYAUCHI A, et al. Improvement of the solving performance by the networking of particle swarm optimization [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, 98 (8): 1777-1786. 10.1587/transfun.e98.a.1777 |
70 | SASAKI T, NAKANO H, MIYAUCHI A, et al. Particle swarm optimizer networks with stochastic connection for improvement of diversity search ability to solve multimodal optimization problems[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, 100(4): 996-1007. 10.1587/transfun.e100.a.996 |
71 | CHEN H, ZHU Y, HU K, et al. RFID network planning using a multi-swarm optimizer [J]. Journal of Network & Computer Applications, 2011, 34(3): 888-901. 10.1016/j.jnca.2010.04.004 |
72 | CHEN H-N, ZHU Y-L. A discrete multi-swarm optimizer for radio frequency identification network scheduling [J]. Journal of Central South University, 2014, 21: 199-212. 10.1007/s11771-014-1931-6 |
73 | LIN N, CHEN H, JING S, et al. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks [J]. Saudi Journal of Biological Sciences, 2017, 24(3): 610-621. 10.1016/j.sjbs.2017.01.033 |
74 | J-J SHIN, BANG H. UAV Path planning under dynamic threats using an improved PSO algorithm [J]. International Journal of Aerospace Engineering, 2020, 2020: 8820284. 10.1155/2020/8820284 |
75 | 刘小龙,梁彤缨.基于方形邻域和随机数组的哈里斯鹰优化算法[J].控制与决策, 2022, 37(10): 2467-2476. |
LIU X L, LIANG T Y. Harris hawk optimization algorithm based on square neighborhood and random array [J]. Control and Decision, 2022, 37(10): 2467-2476. | |
76 | 韩敏, 张丽君. 基于多样性检测的双子群多目标粒子群算法[J]. 控制与决策, 2017, 32(12): 2268-2272. |
HAN M, ZHANG L J. Bi-group multi-objective particle swarm optimization algorithm based on diversity metric [J]. Control and Decision, 2017, 32(12): 2268-2272. | |
77 | 陈忠云,张达敏,辛梓芸.多子群的共生非均匀高斯变异樽海鞘群算法[J].自动化学报, 2022, 48(5): 1307-1317. |
CHEN Z Y, ZHANG D M, XIN Z Y. Multi-subpopulation based symbiosis non-uniform Gaussian mutation salp group algorithm [J]. Acta Automatica Sinica, 2022, 48(5): 1307-1317. | |
78 | DWIVEDI S. Detecting anonymous attacks in wireless communication medium using adaptive grasshopper optimization algorithm [J]. Cognitive Systems Research, 2021, 69: 1-21. 10.1016/j.cogsys.2021.04.003 |
79 | BELKHIRI Y, KAMEL N, DRIAS H. An efficient multi-swarm elephant herding optimization for solving community detection problem in complex environment [J]. Concurrency and Computation: Practice and Experience, 2021, 34(1): e6590. 10.1002/cpe.6590 |
80 | 张强, 李盼池. 自适应分组差分萤火虫算法求解连续空间优化问题[J]. 控制与决策, 2017, 32(7): 1217-1222. |
ZHANG Q, LI P C. Adaptive grouping difference firefly algorithm for continuous space optimization problems [J]. Control and Decision, 2017, 32(7): 1217-1222. | |
81 | HSU H-P. Printed circuit board assembly planning for multi-head gantry SMT machine using multi-swarm and discrete firefly algorithm [J]. IEEE Access, 2021, 9: 1642-1654. 10.1109/access.2020.3046495 |
82 | LI J, XIAO D-D, ZHANG T, et al. Multi-swarm cuckoo search algorithm with Q-learning model [J]. The Computer Journal, 2019, 64(1): 108-131. |
83 | 王友卫, 凤丽洲. 基于双子群和分区采样的果蝇优化新算法[J]. 浙江大学学报(工学版), 2017, 51(11): 2292-2298. |
WANG Y W, FENG L Z. Novel double subgroups and partiton sampling based fruit fly optimization algorithm [J]. Journal of Zhejiang University (Engineering Science), 2017, 51(11):2292-2298. | |
84 | LUO R, ZHENG H, GUO J. Solving the multi-functional heterogeneous UAV cooperative mission planning problem using multi-swarm fruit fly optimization algorithm [J]. Sensors, 2020, 20(18): 5026. 10.3390/s20185026 |
85 | ZHAO X, FANG Y, MA S, et al. Multi-swarm improved moth-flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems [J]. Expert Systems with Applications, 2022, 204: 117562. 10.1016/j.eswa.2022.117562 |
86 | SUN L, SUN W, LIANG X, et al. A modified surrogate-assisted multi-swarm artificial bee colony for complex numerical optimization problems [J]. Microprocessors and Microsystems, 2020, 76: 103050. 10.1016/j.micpro.2020.103050 |
87 | MA S, FANG Y, ZHAO X, et al. Multi-swarm improved grey wolf optimizer with double adaptive weights and dimension learning for global optimization problems [J]. Mathematics and Computers in Simulation, 2023, 205: 619-641. 10.1016/j.matcom.2022.10.007 |
88 | NIU B, XUE B, ZHOU T, et al. Aviation maintenance technician scheduling with personnel satisfaction based on interactive multi-swarm bacterial foraging optimization [J]. International Journal of Intelligent Systems, 2022, 37(1): 723-747. 10.1002/int.22645 |
89 | WANG C, LI Y, LI X. Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm [J]. Journal of Systems Engineering and Electronics, 2021, 32(2):261-271. 10.23919/jsee.2021.000023 |
[1] | 王震, 张珊珊, 邬斌扬, 苏万华. 基于自适应粒子群优化算法的串联复合涡轮储能优化策略[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 611-618. |
[2] | 王波, 王浩, 杜晓昕, 郑晓东, 周薇. 基于亚群和差分进化的混合蜻蜓算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2868-2876. |
[3] | 梁军, 洪泽泓, 余松森. 基于改进粒子群优化算法和遗传变异的图像分割模型[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1743-1749. |
[4] | 高智慧, 韩萌, 刘淑娟, 李昂, 穆栋梁. 基于智能优化算法的高效用项集挖掘方法综述[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1676-1686. |
[5] | 于振华, 刘争气, 刘颖, 郭城. 基于自适应混合粒子群优化的软件缺陷预测特征选择方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1206-1213. |
[6] | 马学森, 许雪梅, 蒋功辉, 乔焰, 周天保. 混合自适应粒子群工作流调度优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 474-483. |
[7] | 柳春锋, 李峥, 王居凤. 分布式工厂中微型制造单元多目标优化[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3824-3832. |
[8] | 朱嘉豪, 郑巍, 杨丰玉, 樊鑫, 肖鹏. 基于蚁群算法优化反向传播神经网络的软件质量预测[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3568-3573. |
[9] | 高媛媛, 余振华, 杜方, 宋丽娟. 基于贝叶斯优化的无标签网络剪枝算法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 30-36. |
[10] | 盖荣丽, 高守传, 李明霞. 粒子群优化算法求解最优控制点的非均匀有理B样条曲线拟合[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2177-2183. |
[11] | 高兵, 郑雅, 秦静, 邹启杰, 汪祖民. 基于麻雀搜索算法和改进粒子群优化算法的网络入侵检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1201-1206. |
[12] | 董永峰, 邓亚晗, 董瑶, 王雅琮. 基于深度学习的聚类综述[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1021-1028. |
[13] | 聂方鑫, 王宇嘉, 贾欣. 教与学信息交互粒子群优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 874-882. |
[14] | 张京, 朱爱红. 基于遗传算法和粒子群优化的列车自动驾驶速度曲线优化方法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 599-605. |
[15] | 张盟, 郭健全. 需求和回收不确定的闭环供应链渠道结构选择[J]. 计算机应用, 2021, 41(7): 2100-2107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||