[1] WANG Z, MA Y, GU J. Multi-focus image fusion using PCNN [J]. Pattern Recognition, 2010, 43(6): 2003-2016. [2] LI X, MA Y, FENG X. Self-adaptive autowave pulse-coupled neural network for shortest-path problem [J]. Neurocomputing, 2013, 115: 63-71. [3] MA Y, LIU L, ZHAN K, et al. Pulse-coupled neural networks and one-class support vector machines for geometry invariant texture retrieval [J]. Image and Vision Computing, 2010, 28(11): 1524-1529. [4] MAASS W. Networks of spiking neurons: the third generation of neural network models [J]. Neural Networks, 1997, 10(9):1659-1671. [5] VREEKEN J. Spiking neural networks, an introduction [EB/OL]. [2015-01-01]. http://people.mmci.uni-saarland.de/~jilles/pubs/2002/spiking_neural_networks_an_introduction-vreeken.pdf. [6] GERSTNER W. Spiking neurons [M]//MAASS W, BISHOP C M. Pulsed Neural Networks. Cambridge: MIT Press, 1999. [7] GERSTNER W, KISTLER W. Spiking neuron models [M]. Cambridge: Cambridge University Press,2002. [8] MAASS W. Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons [M]//MOZER M, JORDAN M I, PETSCHE T. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1997: 211-217. [9] GERSTNER W. Time structure of the activity in neural network models[J]. Physical Review E, 1995, 51: 738-758. [10] KASABOV N, CAPECC E. Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes [J]. Information Sciences, 2015, 294:565-575. [11] KASABOV N, FEIGI V, HOU Z G, et al. Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke [J]. Neurocomputing, 2014, 134: 269-279. [12] TU E, CAO L, YANG J, et al. A novel graph-based k-means for nonlinear manifold clustering and representative selection [J]. Neurocomputing, 2014,143:109-122. [13] KASABOV N, DHOBLE K, NUNTALID N. Dynamic evolving spiking neural networks for on-line spatio and spectrotemporal pattern recognition[J]. Neural Networks, 2012, 141: 188-201. [14] WYSOSKI S, BENUSKOVA L, KASABOV N, et al. Evolving spiking neural networks for audiovisual information processing [J]. Neural Networks, 2010, 23(7): 819-835. [15] WANG X, HOU Z, TAN M, et al. Spiking neural networks and its application in mobile robots [C]//Proceeding of 30th China Control Conference. Shanghai: Shanghai Science and Technology Press,2011:4133-4138.(王秀青,侯增广,谭民,等. Spiking神经网络及其在移动机器人中的应用[C]//第30届中国控制会议论文集.上海:上海科学技术出版社,2011:4133-4138.) [16] CHENG L, HOU Z, TAN M, et al. Neural-network-based adaptive leader-following control for multi-Agent systems with uncertainties [J]. IEEE Transaction Neural Network, 2010, 21(8): 1351-1358. [17] HOU Z, CHENG L, TAN M. Multi-criteria optimization for coordination of redundant robots using a dual neural network [J]. IEEE Transactions on System, Man and Cybernetics, 2010, 40(4):1075-1087. [18] CHENG L, HOU Z, TAN M. Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model [J]. Automatica, 2009, 45(10): 2312-2318. [19] ONIZ Y, KAYNAK O. Control of a direct drive robot using fuzzy spiking neural networks with variable structure systems-based learning algorithm [J]. Neurocomputing, 2015,149: 690-699. [20] GAMEZ D. Information integration based predictions about the conscious states of a spiking neural network [J]. Consciousness and Cognition, 2010, 19(1): 294-310. [21] WANG X, HOU Z, TAN M, et al. A behavior controller for mobile robot based on spiking neural networks [J]. Neurocomputing, 2008, 71: 655-666. [22] WANG X, HOU Z, LV F, et al. Mobile robots' modular navigation controller using spiking neural networks [J]. Neurocomputing, 2014, 134: 230-238. [23] KASABOV N. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data[J]. Neural Networks, 2014, 52: 62-76. [24] KASABOV N. NeuCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals [EB/OL]. [2014-10-10]. http://ncs.ethz.ch/projects/evospike/publications/neucube. [25] THORPE S, DELORME A. Spike-based strategies for rapid processing [J]. Neural Networks, 2001, 14(6/7): 715-725. [26] THORPE S, GAUTRAIS J. Rank order coding [J]. Computational Neuroscience: Trends in Research,1998, 13: 113-119. [27] MARKRA H, LUBKE J, FROTSCHER M, et al. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs [J]. Science, 1997, 5297(275): 213-215. [28] FUSI S, ANNUNZIATO M, BADONI D, et al. Spike driven synaptic plasticity: theory, simulation, VLSI implementation [J]. Neural Computation, 2000, 12(10): 2227-2258. [29] LICHTSTEINER P, DELBRUCK T. A 64×64 AER logarithmic temporal derivative silicon retina [J]. Research in Microelectronics and Electronics, 2005, 2: 202-205. [30] WANG X. Research on environment perception and behavior control for mobile robot based on spiking neural networks [D]. Beijing: Chinese Academy of Sciences, Postgraduate Institute, 2007.(王秀青.基于Spiking神经网络的环境感知和行为控制的研究[D].北京:中国科学院研究生院, 2007.) [31] WANG X, HOU Z, TAN M, et al. Corridor-scene classifying method for mobile robot based on multi-sonar-sensor information fusion [J]. International Journal of Information Acquisition, 2007, 4(1):15-26. |