1 |
ZHENG W, WANG C, PEI J, et al. Causality based propagation history ranking in social networks[C]// Proceedings of the 25th International Joint Conference on Aritificial Intelligence. Palo Alto: AAAI Press, 2016: 3917-3923.
|
2 |
GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272.
|
3 |
DUVENAUD D K, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]// Proceedings of the 28th Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2224-2232.
|
4 |
JIN D, HUO C, LIANG C, et al. Heterophilic graph neural network via attribute completion[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 391-400.
|
5 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the 2018 European Semantic Web Conference. Cham: Springer, 2018: 593-607.
|
6 |
ZHANG M, CHEN Y. Link prediction based on graph neural networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 5171-5181.
|
7 |
WANG Z, LIU M, LUO Y, et al. Advanced graph and sequence neural networks for molecular property prediction and drug discovery[J]. Bioinformatics, 2022, 38(9): 2579-2586.
|
8 |
严骏驰. 图匹配问题的研究和算法设计[D]. 上海:上海交通大学,2015:170.
|
|
YAN J C. Algorithmic studies and design on graph matching[D]. Shanghai: Shanghai Jiao Tong University, 2015: 170.
|
9 |
宁懿昕,谢辉,姜火文.图神经网络社区发现研究综述[J]. 计算机科学,2021,48(11A):11-16.
|
|
NING Y X, XIE H, JIANG H W. Survey of graph neural network in community detection[J]. Computer Science, 2021, 48(11A): 11-16.
|
10 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2016-11-21)[2023-06-24]. .
|
11 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018-02-04)[2023-06-24]. .
|
12 |
ZHU J, ROSSI R A, RAO A, et al. Graph neural networks with heterophily[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2021: 11168-11176.
|
13 |
ZHU M, WANG X, SHI C, et al. Interpreting and unifying graph neural networks with an optimization framework[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021:1215-1226.
|
14 |
HE D, LIANG C, LIU H, et al. Block modeling-guided graph convolutional neural networks [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2022: 4022-4029.
|
15 |
PEI H, WEI B, CHANG K C-C, et al. Geom-GCN: geometric graph convolutional networks [EB/OL]. (2020-04-13)[2023-06-24]. .
|
16 |
ZHU J, YAN Y, ZHAO L, et al. Beyond homophily in graph neural networks: current limitations and effective designs[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 7793-7804.
|
17 |
CHIEN E, PENG J, LI P, et al. Adaptive universal generalized pagerank graph neural network [EB/OL]. (2021-10-26) [2023-06-24]. .
|
18 |
SUN Y, DENG H, YANG Y, et al. Beyond homophily: structure-aware path aggregation graph neural network[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2233-2240.
|
19 |
JIN D, WANG R, GE M, et al. RAW-GNN: random walk aggregation based graph neural network [C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2108-2114.
|
20 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
|
21 |
DWIVEDI V P, BRESSON X. A generalization of transformer networks to graphs[EB/OL]. (2020-12-17)[2023-06-24]. .
|
22 |
FU X, ZHANG J, MENG Z, et al. MAGNN: metapath aggregated graph neural network for heterophilic graph embedding[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 2331-2341.
|
23 |
DU Z, ZHOU C, YAO J, et al. CogKR: cognitive graph for multi-hop knowledge reasoning [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1283-1295.
|
24 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
25 |
MIALON G, CHEN D, SELOSSE M, et al. GraphiT: encoding graph structure in Transformers [EB/OL]. (2021-06-10)[2023-06-24]. .
|
26 |
SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data articles [J]. AI Magazine, 2008, 29(3): 93-106.
|
27 |
NAMATA G, LONDON B, GETOOR L, et al. Query-driven active surveying for collective classification [EB/OL]. [2023-06-20]. htttps://people.cs.vt.edu/~bhuang/papers/namata-mlg12.pdf.
|
28 |
TANG J, SUN J, WANG C, et al. Social influence analysis in large-scale networks [C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 807-816.
|
29 |
PARK Y S, LEK S. Artificial neural networks: multilayer perceptron for ecological modeling[J]. Developments in Environmental Modelling, 2016, 28: 123-140.
|