[1] WHO. Falls[EB/OL].[2018-01-16]. https://www.who.int/news-room/fact-sheets/detail/falls. [2] ZHANG Z, CONLY C, ATHITSOS V. A survey on vision-based fall detection[C]// Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments. New York: ACM, 2015: Article No. 46. [3] RITA C, ANDREA P, ROBERTO V. A multi-camera vision system for fall detection and alarm generation[J]. Expert Systems, 2010, 24(5): 334-345. [4] NUNEZ-MARCOS A, AZKUNE G, ARGANDA-CARRERAS I. Vision-based fall detection with convolutional neural networks[J]. Wireless Communications & Mobile Computing, 2017, 2017: Article ID 9474806. [5] 沈秉乾, 武志勇, 贺前华,等. 人体姿势状态判决的跌倒检测方法[J]. 计算机应用, 2014, 34(S1):223-227. (SHEN B Q, WU Z Y, HE Q H, et al. Fall detection method for human posture state judgment[J]. Journal of Computer Applications, 2014, 34(S1):223-227.) [6] 李雷, 张帆, 施化吉,等. 穿戴式跌倒检测中特征向量的提取和降维研究[J]. 计算机应用研究, 2019,36(1):103-105. (LI L, ZHANG F, SHI H J, et al. Extraction and dimensionality reduction of feature vectors in wearable fall detection[J]. Application Research of Computers, 2019, 36(1):103-105.) [7] MOSTARAC P, MALARIC R, JURCEVIC M, et al. System for monitoring and fall detection of patients using mobile 3-axis accelerometers sensors[C]// Proceedings of the 2011 IEEE International Symposium on Medical Measurements and Applications. Piscataway, NJ: IEEE, 2011:456-459. [8] ZIGEL Y, LITVAK D, GANNOT I. A method for automatic fall detection of elderly people using floor vibrations and sound-proof of concept on human mimicking doll falls[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(12):2858-2867. [9] 沈莹, 黎海涛. 基于移动终端的老年人跌倒检测系统设计[J]. 中国新通信, 2016, 18(7):13-15. (SHEN Y, LI H T. Design of elderly fall detection system based on mobile terminal[J]. China New Telecommunication, 2016, 18(7):13-15.) [10] 王忠民, 张新平, 梁琛. 一种基于时序分析异常数据的跌倒行为监测方法[J]. 计算机应用研究, 2018,35(3): 839-843. (WANG Z M, ZHANG X P, LIANG C. A fall behavior monitoring method based on time series analysis abnormal data[J]. Application Research of Computers, 2018, 35(3): 839-843.) [11] KIANOUSH S, SAVAZZI S, VICENTINI F, et al. Leveraging RF signals for human sensing: fall detection and localization in human-machine shared workspaces[C]// Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics. Piscataway, NJ: IEEE, 2015: 1456-1462. [12] KIANOUSH S, SAVAZZI S, VICENTINI F, et al. Device-free RF human body fall detection and localization in industrial workplaces[J]. IEEE Internet of Things Journal, 2017,4(2): 351-362. [13] HAN C, WU K, WANG Y, et al. Wifall: device-free fall detection by wireless networks[C]// INFOCOM 2014: Proceedings of the 2014 IEEE Conference on Computer Communicationsns. Piscataway, NJ: IEEE, 2014:271-279. [14] WANG Y, WU K, NI L M. WiFall: Device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 581-594. [15] ZHANG D, WANG H, WANG Y, et al. Anti-fall: a non-intrusive and real-time fall detector leveraging CSI from commodity WiFi devices[C]// ICOST 2015: Proceedings of the 2015 International Conference on Smart Homes and Health Telematics. Berlin: Springer, 2015: 181-193. [16] WANG H, ZHANG D, WANG Y, et al. RT-fall: a real-time and contactless fall detection system with commodity WiFi devices[J]. IEEE Transactions on Mobile Computing, 2017, 16(2):511-526. [17] GU Y, ZHAN J, JI Y, et al. MoSense: a RF-based motion detection system via off-the-shelf WiFi devices[J]. IEEE Internet of Things Journal, 2017, 4(6): 2326-2341. [18] GU Y, LIU T, LI J, et al. EmoSense: data-driven emotion sensing via off-the-shelf WiFi devices[C]// Proceedings of the 2018 IEEE International Conference on Communications. Piscataway, NJ: IEEE, 2018: 1-6. |