[1] 叶良, 戚永钊, 施俊侠, 等. 人体摔倒检测技术研究综述[J]. 电子测试,2020(2):50-51,65.(YE L,QI Y Z,SHI J X,et al. Review of fall detection technology[J]. Electronic Test,2020(2):50-51,65.) [2] 刘伟丽. 基于特征分析的个性化摔倒检测[D]. 大连:大连理工大学,2013:1-5.(LIU W L. Personalized fall detection based on feature analysis[D]. Dalian:Dalian University of Technology, 2013:1-5.) [3] 禹明娟. 基于视频的室内老人摔倒检测研究[D]. 杭州:杭州电子科技大学,2016:2-3.(YU M J. Research on fall detection of indoor elderly based on video[D]. Hangzhou:Hangzhou Dianzi University,2016:2-3.) [4] 张小驰, 陈天华, 许继平, 等. 基于多传感器融合的摔倒检测算法的研究[J]. 计算机测量与控制,2015,23(6):2237-2240. (ZHANG X C,CHEN T H,XU J P,et al. Fall detection algorithm research based on multi-sensor fusion[J]. Computer Measurement and Control,2015,23(6):2237-2240.) [5] FOROUGHI H, ASKI B S, POURREZA H. Intelligent video surveillance for monitoring fall detection of elderly in home environments[C]//Proceedings of the 11th International Conference on Computer and Information Technology. Piscataway:IEEE, 2008:219-224. [6] MIAOU S G,SUNG P H,HUANG C Y. A customized human fall detection system using omni-camera images and personal information[C]//Proceedings of the 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare. Piscataway:IEEE, 2006:39-42. [7] ROUGIER C,MEUNIER J,ST-ARNAUD A,et al. Robust video surveillance for fall detection based on human shape deformation[J]. IEEE Transactions on Circuits and Systems for Video Technology,2011,21(5):611-622. [8] 沈秉乾, 武志勇, 贺前华, 等. 人体姿势状态判决的跌倒检测方法[J]. 计算机应用,2014,34(S1):223-227,264.(SHEN B Q, WU Z Y,HE Q H,et al. Falling detection method based on human body posture judgment[J]. Journal of Computer Applications, 2014,34(S1):223-227,264.) [9] 马露, 裴伟, 朱永英, 等. 基于深度学习的跌倒行为识别[J]. 计算机科学,2019,46(9):106-112.(MA L,PEI W,ZHU Y Y,et al. Fall action recognition based on deep learning[J]. Computer Science,2019,46(9):106-112.) [10] GAMMULLE H,DENMAN S,SRIDHARAN S,et al. Two stream LSTM:a deep fusion framework for human action recognition[C]//Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2017:177-186. [11] NÚÑEZ-MARCOS A,AZKUNE G,ARGANDA-CARRERAS I. Vision-based fall detection with convolutional neural networks[J]. Wireless Communications and Mobile Computing,2017,2017:No. 9474806. [12] 申代友, 库洪安, 皮红英, 等. 基于深度相机的老年跌倒监护系统[J]. 中国医学物理学杂志,2019,36(2):223-228.(SHEN D Y,KU H A,PI H Y,et al. Depth camera-based fall detection system for the elderly[J]. Chinese Journal of Medical Physics, 2019,36(2):223-228.) [13] 袁智, 胡辉. 一种基于双流卷积神经网络跌倒识别方法[J]. 河南师范大学学报(自然科学版),2017,45(3):96-101.(YUAN Z, HU H A. fall detection method based on two-stream convolutional neural network[J]. Journal of Henan Normal University(Natural Science Edition),2017,45(3):96-101.) [14] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [15] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [16] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2019-09-08]. https://pjreddie.com/media/files/papers/YOLOv3.pdf. [17] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4700-4708. |