[1] GHOLIAN A, MOHSENIAN-RAD H, HUA Y B. Optimal industrial load control in smart grid[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2305-2316. [2] LIU F, LIU W J, ZHA X M. Solid-state circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in low-voltage DC microgrid[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 3007-3021. [3] MAQSOOD A, OVERSTREET A, CORZINE K. Modified z-source DC circuit breaker topologies[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7394-7403. [4] 朱童,余占清,曾嵘,等.混合式直流断路器模型及其操作暂态特性研究[J].中国电机工程学报,2016,36(1):18-30.(ZHU T, YU Z Q, ZENG R, et al. Transient model and operation characteristics researches of hybrid DC circuit breaker[J]. Proceedings of the CSEE, 2016, 36(1): 18-30.) [5] PEI X Z, CWIKOWSKI O, SMITH A C. Design and experimental tests of a superconducting hybrid DC circuit breaker[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5. [6] 田园,胡炎.计及保护和断路器动作不确定性的隐性故障检测模型[J].电网技术,2016,40(9):2896-2903.(TIAN Y, HU Y. Analytic model of hidden failure detection model considering uncertainty of protection and circuit breaker tripping[J]. Power System Technology, 2016, 40(9): 2896-2903.) [7] MAJI T K, ACHARJEE P. Multiple solutions of optimal pmu placement using exponential binary PSO algorithm for smart grid applications[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 2550-2559. [8] LIU C L, WEI D, ZHANG B. On novel methods for characterizing the arc/contact movement and its relation with the current/voltage in low-voltage circuit breaker[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 882-888. [9] 李鹏飞,周文俊,曾国,等.高压断路器合闸弹簧动态特性及储能状态检测方法[J].电工技术学报,2016,31(3):104-112.(LI P F, ZHOU W J, ZENG G, et al. The dynamic characteristics and energy storage state detection method of high-voltage circuit breaker closing spring[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 104-112.) [10] 赵思洋,汪安本,周文俊,等.基于模糊综合评判的断路器操动机构弹簧储能状态评估[J].高压电器,2016,52(6):187-192.(ZHAO S Y, WANG A B, ZHOU W J, et al. State assessment of circuit breaker actuator's spring based on fuzzy comprehensive evaluation[J]. High Voltage Apparatus, 2016, 52(6): 187-192.) [11] BONYADI M R, MICHALEWICZ Z. Stability analysis of the particle swarm optimization without stagnation assumption[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 814-819. [12] BANERJEE S, GHOSH A, RANA N. An improved interleaved boost converter with PSO based optimal type-Ⅲ controller[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 323-337. [13] 王皓,欧阳海滨,高立群.一种改进的全局粒子群优化算法[J].控制与决策,2016,31(7):1161-1168.(WANG H, OUYANG H B, GAO L Q. An improved global particle swarm optimization algorithm[J]. Control and Decision, 2016, 31(7): 1161-1168.) [14] JIANG S Y, YANG S X. An improved multiobjective optimization evolutionary algorithm based on decomposition for complex pareto fronts[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 421-437. [15] 张栋华,李征,蔡旭.基于量子行为粒子群优化算法的为电网优化配置[J].计算机仿真,2014,31(8):120-124,208.(ZHANG D H, LI Z, CAI X. Micro-grid optimization allocation problem based on quantum-behaved particle swarm optimization[J]. Computer Simulation, 2014, 31(8): 120-124, 208.) [16] 周海鹏,高芹,蒋丰千,等.自适应混沌量子粒子群算法及其在WSN覆盖优化中的应用[J].计算机应用,2018,38(4):1064-1071.(ZHOU H P, GAO Q, JIANG F Q, et al. Application of self-adaptive chaotic quantum particle swarm algorithm in coverage optimization of wireless sensor network[J]. Journal of Computer Applications, 2018, 38(4): 1064-1071.) [17] FONG S M, WONG R, VASILAKOS A V. Accelerated PSO swarm search feature selection for data stream mining big data[J]. IEEE Transactions on Services Computing, 2016, 9(1): 33-45. [18] 陈大鹏,张九根,梁星.基于免疫粒子群算法的中央空调冷冻水系统优化控制[J].计算机应用,2017,37(9):2717-2721.(CHEN D P, ZHANG J G, LIANG X. Optimal control of chilled water system in central air-conditioning based on artificial immune and particle swarm optimization algorithm[J]. Journal of Computer Applications, 2017,37(9): 33-45.) [19] 范成礼,邢清华,李响,等.带反向预测及斥力因子的改进粒子群优化算法[J].控制与决策,2015,30(2):311-315.(FAN C L, XING Q H, LI X, et al. Improved particle swarm optimization algorithm with reverse forecast and repulsion[J]. Control and Decision, 2015, 30(2): 311-315.) [20] 黄松,田娜,纪志成.基于自适应概率粒子群优化算法的研究[J].系统仿真学报,2016,28(4):874-879.(HUANG S, TIAN N, JI Z C. Study of modified particle swarm optimization algorithm based on adaptive mutation probability[J]. Journal of System Simulation, 2016, 28(4): 874-879.) [21] 李国栋,胡建平,夏克文.基于云PSO的RVM入侵检测[J].控制与决策,2015,30(4):698-702.(LI G D, HU J P, XIA K W. Intrusion detection using relevance vector machine based on cloud particle swarm optimization[J]. Control and Decision, 2015, 30(4): 698-702.) [22] MASDARI M, SALEHI F, JALALI M, et al. A survey of PSO-based scheduling algorithms in cloud computing[J]. Journal of Network and Systems Management, 2017, 25(1): 122-158. [23] CHEN S M, CHIOU C H. Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6): 1905-1916. [24] 邱飞岳,莫雷平,江波,等.基于大规模变量分解的多目标粒子群优化算法研究[J].计算机学报,2016,39(12):2598-2613.(QIU F Y, MO L P, JIANG B, et al. Multi-objective particle swarm optimization algorithm using large scale variable decomposition[J]. Chinese Journal of Computers, 2016, 39(12): 2598-2613.) [25] 鞠文哲,夏克文,戴水东.改进的云粒子群优化算法及其断路器优化应用[J].计算机应用研究, 2018, 25(7):2084-2087.(JU W Z, XIA K W, DAI S D. Improved cloud particle swarm optimization algorithm and its application in circuit breaker optimization[J].Application Research of Computers, 2018, 25(7):2084-2087.) [26] 王生生,杨娟娟,柴胜.基于混沌鲶鱼效应的人工蜂群算法及应用[J].电子学报,2014,42(9):1731-1737.(WANG S S, YANG J J, CHAI S. Artificial bee colony algorithm with chaotic catfish effect and its application[J]. Acta Electronica Sinica, 2014, 42(9): 1731-1737.) [27] 刘艺,刁兴春,曹建军,等.求解子集问题的鲶鱼效应蝙蝠蚁群优化[J].系统工程与电子技术,2016,38(10):2441-2448.(LIU Y, DIAO X C, CAO J J, et al. Catfish bat algorithm-ant colony optimization for subset problems[J]. Systems Engineering and Electronics, 2016, 38(10): 2441-2448.) [28] GE H W, SUN L, TAN G Z. Cooperative hierarchical PSO with two stage variable interaction reconstruction for large scale optimization[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2809-2823. |