[1] PENNACCHIOTTI M, POPESCU A M. A machine learning ap-proach to twitter user classification[C]//Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. Pola Alto, CA:AAAI Press, 2011:281-288. [2] PEDROCHE F. A model to classify users of social networks based on PageRank[J]. International Journal of Bifurcation and Chaos, 2012, 22(7):1-14. [3] NEVILLE J, JENSEN D. Iterative classification in relational data[C]//Proceedings of the AAAI 2000 Workshop on Learning Statistical Models from Relational Data. Pola Alto, CA:AAAI Press, 2000:42-49. [4] LU Q, GETOOR L. Link-based classification[C]//Proceedings of the 20th International Conference on Machine Learning. New York:International Machine Learning Society, 2003:496-503. [5] MACSKASSY S A, PROVOST F. A simple relational classifier[R]. New York:New York University. Stern School of Business, 2003. [6] JI M, HAN J, DANILEVSKY M. Ranking-based classification of heterogeneous information networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2011:1298-1306. [7] AZRAN A. The rendezvous algorithm:multiclass semi-supervised learning with Markov random walks[C]//Proceedings of the 24th International Conference on Machine Learning. New York:ACM, 2007:49-56. [8] DESROSIERS C, KARYPIS G. Within-network classification using local structure similarity[C]//Proceedings of the 2009 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 5781. Berlin:Springer, 2009:260-275. [9] 贺超波,杨镇雄,洪少文,等. 应用随机游走的社交网络用户分类方法[J]. 计算机科学, 2015, 42(2):198-203. (HE C B, YANG Z X, HONG S W, et al. User Classification in online social network using random walk[J]. Computer Science, 2015, 42(2):198-203.) [10] LI Y, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1511.05493.pdf. [11] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1704.01212.pdf. [12] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1806.01261.pdf. [13] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:International Machine Learning Society, 2016:2014-2023. [14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1609.02907.pdf. [15] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1710.10903.pdf. [16] SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:29-38. [17] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1801.07455.pdf. [18] ZHANG X S, HE L, CHEN K, et al. Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson's disease[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1805.08801.pdf. [19] 曲强,于洪涛,黄瑞阳. 基于图卷积网络的社交网络Spammer检测技术[J]. 网络与信息安全学报, 2018, 4(5):39-46. (QU Q, YU H T, HUANG R Y. Spammer detection technology of social network based on graph convolution network[J]. Chinese Journal of Network and Information Security, 2018, 4(5):39-46.) [20] WANG H, WANG J, WANG J, et al. GraphGAN:graph representation learning with generative adversarial nets[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Pola Alto, CA:AAAI, 2018:2508-2515. [21] SANCHEZ-GONZALEZ A, HEESS N, SPRINGENBERG J T, et al. Graph networks as learnable physics engines for inference and control[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1806.01242.pdf. [22] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1506.00019.pdf. [23] KIPF T, FETAYA E, WANG K C, et al. Neural relational inference for interacting systems[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1802.04687.pdf. [24] PALM R B, PAQUET U, WINTHER O. Recurrent relational networks[C]//Proceedings of the 32nd Conference on Neural Information Processing Systems. La Jolla, CA:The Neural Information Processing Systems Foundation, 2018:3372-3382. [25] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL].[2019-04-20].https://arxiv.org/pdf/1810.00826.pdf. |