[1] LEI Y,LI N,GUO L,et al. Machinery health prognostics:a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104:799-834. [2] YAN R,GAO R X. Machine health diagnosis based on approximate entropy[C]//Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference. Piscataway:IEEE,2004, 2054-2059. [3] QIU H,LEE J,LIN J,et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration,2006,289(4/5):1066-1090. [4] LIU R,YANG B,ZHANG X,et al. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2016, 75:345-370. [5] 杨洪柏, 张宏利, 刘树林. 基于可视化异类特征优选融合的滚动轴承故障诊断[J]. 计算机应用,2017,37(4):1207-1211. (YANG H B,ZHANG H L,LIU S L. Rolling bearing fault diagnosis based on visual heterogeneous feature fusion[J]. Journal of Computer Applications,2017,37(4):1207-1211.) [6] MAO W,CHEN J,LIANG X,et al. A new online detection approach for rolling bearing incipient fault via self-adaptive deep feature matching[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(2):443-456. [7] WEN L,LI X,GAO L,et al. A new convolutional neural networkbased data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. [8] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[C]//Proceedings of the 2018 Asian Conference on Computer Vision,LNCS 11363. Cham:Springer,2018:622-637. [9] JIA F,LEI Y,GUO L,et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J]. Neurocomputing,2018,272:619-628. [10] WEN L,GAO L,LI X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(1):136-144. [11] HAN T,LIU C,YANG W,et al. Deep transfer network with joint distribution adaptation:a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions, 2020, 97:269-281. [12] LU W,LIANG B,CHENG Y,et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics,2017,64(3):2296-2305. [13] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报,2019,55(7):1-8.(LEI Y G, YANG B,DU Z J,et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019,55(7):1-8.) [14] MAO W,DING L,TIAN S,et al. Online detection for bearing incipient fault based on deep transfer learning[J]. Measurement, 2020,152:No. 107278. [15] WANG F,JIANG M,QIAN C,et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6450-6458. [16] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:6000-6010. [17] 孔子迁, 邓蕾, 汤宝平, 等. 基于时频融合和注意力机制的深度学习行星齿轮箱故障诊断方法[J]. 仪器仪表学报,2019,40(6):221-227.(KONG Z Q,DENG L,TANG B P,et al. Fault diagnosis of planetary gearbox based on deep learning with timefrequency fusion and attention mechanism[J]. Chinese Journal of Scientific Instrument,2019,40(6):221-227.) [18] 吴静然, 丁恩杰, 崔冉, 等. 采用多尺度注意力机制的旋转机械故障诊断方法[J]. 西安交通大学学报,2020,54(2):51-58. (WU J R,DING E J,CUI R,et al. A diagnostic approach for rotating machinery using multi-scale feature attention mechanism[J]. Journal of Xi'an Jiaotong University,2020,54(2):51-58.) [19] EL-SAWY A,EL-BAKRY H,LOEY M. CNN for handwritten Arabic digits recognition based on LeNet-5[C]//Proceedings of the 2016 International Conference on Advanced Intelligent Systems and Informatics,AISC 533. Cham:Springer,2016:566-575. [20] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [21] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [22] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [23] GRETTON A,BORGWARDT K,RASCH M,et al. A kernel method for the two-sample-problem[C]//Proceedings of the 9th International Conference on neural Information Processing Systems. Cambridge:MIT Press,2006:513-520. [24] RAI V K,MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing,2007,21(6):2607-2615. [25] YANG B,LEI Y,JIA F,et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing,2019,122:692-706. [26] MEDJAHER K, ZERHOUNI N, BAKLOUTI J. Data-driven prognostics based on health indicator construction:application to PRONOSTIA's data[C]//Proceedings of the 2013 European Control Conference. Piscataway:IEEE,2013:1451-1456. [27] LI G,HU Y,CHEN H,et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy and Buildings,2016,116:104-113. [28] PEZZOTTI N,THIJSSEN J,MORDVINTSEV A,et al. GPGPU linear complexity t-SNE optimization[J]. IEEE Transactions on Visualization and Computer Graphics,2020,26(1):1172-1181. [29] LU W,LI Y,CHENG Y,et al. Early fault detection approach with deep architectures[J]. IEEE Transactions on Instrumentation and Measurement,2018,67(7):1679-1689. [30] MA H,HU Y,SHI H. Fault detection and identification based on the neighborhood standardized local outlier factor method[J]. Industrial and Engineering Chemistry Research,2013,52(6):2389-2402. [31] DOMINGUES R, FILIPPONE M, MICHIARDI P, et al. A comparative evaluation of outlier detection algorithms:experiments and analyses[J]. Pattern Recognition,2018,74:406-421. [32] 郭小萍, 刘诗洋, 李元. 基于稀疏残差距离的多工况过程故障检测方法研究[J]. 自动化学报,2019,45(3):617-625.(GUO X P,LIU S Y,LI Y. Fault detection of multi-mode processes employing sparse residual distance[J]. Acta Automatica Sinica, 2019,45(3):617-625.) [33] LI Y,XU M,LIANG X,et al. Application of bandwidth EMD and adaptive multiscale morphology analysis for incipient fault diagnosis of rolling bearings[J]. IEEE Transactions on Industrial Electronics,2017,64(8):6506-6517. [34] PAN S J,TSANG I W,KWOK J T,et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks,2011,22(2):199-210. [35] GONG B,SHI Y,SHA F,et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2012:2066-2073. |