《计算机应用》唯一官方网站

• •    下一篇

基于时空多图融合的交通流量预测

顾焰杰1,张英俊1,刘晓倩1,周围2,孙威1   

  1. 1. 北京交通大学
    2. 北京交通大学计算机与信息技术学院
  • 收稿日期:2023-09-08 修回日期:2023-10-19 发布日期:2023-12-18 出版日期:2023-12-18
  • 通讯作者: 顾焰杰
  • 基金资助:
    中央高校基本科研业务费专项资金资助(科技领军人才团队项目);国家自然科学基金资助项目;国家自然科学基金资助项目

Traffic flow forecasting via spatial-temporal multi-graph fusion

  • Received:2023-09-08 Revised:2023-10-19 Online:2023-12-18 Published:2023-12-18

摘要: 交通预测是智能交通系统的核心任务, 准确的交通预测可以大大提高公共资源的利用。针对多图神经网络模型对上下文信息使用不足、图融合方法不平衡和只考虑静态空间关系等问题,提出了基于时空多图融合的交通流量预测模型(STGMF)。首先,通过融合空间图、语义图和空间语义图来提取不同区域的不同空间相关性,并利用空间注意力机制和图注意力机制融合不同的图结构以动态学习不同邻居的重要性;随后使用多核时间注意力机制同时捕获局部时间依赖性和全局时间依赖性;最后使用多层感知机对交通流量进行预测,得到最终预测值。利用美国纽约出租车数据集和美国纽约自行车数据集验证模型的有效性。实验结果表明。与时空图卷积神经网络(STGCN)、基于时空注意力的图神经网络(ASTGNN)、元图卷积递归网络(MegaCRN)相比,所提模型的均方根误差(RMSE)分别降低了8.56%、2.7%和2.2%。由此可见,所提模型在提升预测精度方面十分有效。

关键词: 关键词: 多图融合, 多核注意力, 空间注意力, 图注意力, 深度学习

Abstract: Abstract: Abstract: Traffic prediction is a fundamental task in intelligent transportation systems, as accurate predictions can significantly improve the utilization of public resources. To address the limitations of insufficient utilization of contextual information, imbalanced graph fusion techniques, and consideration only of static spatial relationships in existing multi-graph neural network models, a traffic flow prediction model based on spatiotemporal multi-graph fusion (STGMF) was proposed. Firstly, different spatial correlations across regions were extracted by the model through the fusion of spatial graphs, semantic graphs, and spatial-semantic graphs. Spatial attention mechanisms and graph attention mechanisms were utilized to dynamically learn the importance of different graph structures for different neighbors. Then, a multi-kernel temporal attention mechanism was employed to capture both local and global temporal dependencies. Finally, a multi-layer perceptron was utilized to predict traffic flow and obtain the final prediction values. The validity of the model was verified on the New York City Taxi dataset and the New York City Bike dataset. Experimental results show that the Root Mean Square Error (RMSE) of the proposed model STGMF is reduces by 8.56%, 2.7%, and 2.2% compared with that of Spatio-Temporal Graph Convolutional Networks (STGCN), Attention based Spatial-Temporal Graph Neural Network (ASTGNN), and Meta-Graph Convolutional Recurrent Network (MegaCRN), respectively. It can be seen that the proposed model is effective in improving prediction accuracy.

Key words: hypergraph, maximal clique, set enumeration, approximation algorithm, pivot

中图分类号: