计算机应用 ›› 2021, Vol. 41 ›› Issue (2): 479-485.DOI: 10.11772/j.issn.1001-9081.2020060791
所属专题: 先进计算
付安兵, 魏文红, 张宇辉, 郭文静
收稿日期:
2020-06-08
修回日期:
2020-09-21
发布日期:
2020-12-18
出版日期:
2021-02-10
通讯作者:
魏文红
作者简介:
付安兵(1992-),男,四川南充人,硕士研究生,主要研究方向:智能计算;魏文红(1977-),男,江西南昌人,教授,博士,CCF会员,主要研究方向:智能计算;张宇辉(1990-),男,广东兴宁人,讲师,博士,主要研究方向:智能计算;郭文静(1997-),女,浙江苍南人,硕士研究生,主要研究方向:智能计算。
基金资助:
FU Anbing, WEI Wenhong, ZHANG Yuhui, GUO Wenjing
Received:
2020-06-08
Revised:
2020-09-21
Online:
2020-12-18
Published:
2021-02-10
Supported by:
摘要: 针对传统笛卡尔遗传编程(CGP)算法变异操作多样性的缺乏以及其使用的进化策略本身的局限性,提出了一种基于准反向变异的实数笛卡尔遗传编程算法(AD-RVCGP)。首先,和传统CGP一样,AD-RVCGP在进化过程中采用1+λ的进化策略,即由一个父代个体只通过变异操作产生λ个子代个体;其次,该算法在进化过程中动态选择准反向变异算子、末端变异算子和单点变异算子,并且利用反向个体的信息进行变异操作;最后,算法在进化过程中根据进化阶段的状态来选择不同的父代个体用于生成下一代个体。在符号回归问题的测试上,相较于传统CGP,AD-RVCGP的收敛加快了约30%,运行时间少了约20%;另外该算法求得的最优解与真实最优解误差更小。实验结果表明,AD-RVCGP具有较高的收敛速度和问题求解精度。
中图分类号:
付安兵, 魏文红, 张宇辉, 郭文静. 基于准反向变异的实数笛卡尔遗传编程算法[J]. 计算机应用, 2021, 41(2): 479-485.
FU Anbing, WEI Wenhong, ZHANG Yuhui, GUO Wenjing. Real-valued Cartesian genetic programming algorithm based on quasi-oppositional mutation[J]. Journal of Computer Applications, 2021, 41(2): 479-485.
[1] MILLER J F. Cartesian Genetic Programming[M]. Berlin:Springer,2011:5-10. [2] MILLER J F. Cartesian genetic programming:its status and future[J]. Genetic Programming and Evolvable Machines,2019,21(1/2):129-168. [3] GAJDA Z,SEKANINA L. Gate-level optimization of polymorphic circuits using Cartesian genetic programming[C]//Proceedings of the 2009 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2009:1599-1604. [4] HARDING S,MILLER J F. Evolution of robot controller using Cartesian genetic programming[C]//Proceedings of the 8th European Conference on Genetic Programming, LNCS 3447. Berlin:Springer,2005:62-73. [5] KHAN M M,KHAN G M,MILLER J F. Evolution of optimal ANNs for non-linear control problems using Cartesian genetic programming[C]//Proceedings of the 2010 International Conference on Artificial Intelligence.[S. l.]:CSREA Press,2010:339-346. [6] GAJDA Z,SEKANINA L. An efficient selection strategy for digital circuit evolution[C]//Proceedings of the 9th International Conference on Evolvable Systems,LNCS 6274. Berlin:Springer, 2010:13-24. [7] VASICEK Z. Cartesian GP in optimization of combinational circuits with hundreds of inputs and thousands of gates[C]//Proceedings of the 18th European Conference on Genetic Programming,LNCS 9025. Cham:Springer,2015:139-150. [8] VASICEK Z,MRAZEK V,SEKANINA L. Evolutionary functional approximation of circuits implemented into FPGAs[C]//Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway:IEEE,2016:1-8. [9] HARDING S. Evolution of image filters on graphics processor units using Cartesian genetic programming[C]//Proceedings of the 2008 IEEE Congress on Evolutionary Computation. Piscataway:IEEE, 2008:1921-1928. [10] SEKANINA L,HARDING S L,BANZHAF W,et al. Image processing and CGP[M]//MILLER J. Cartesian Genetic Programming,NCS. Berlin:Springer,2011:181-215. [11] PARIS P C D,PEDRINO E C,NICOLETTI M C. Automatic learning of image filters using Cartesian genetic programming[J]. Integrated Computer-Aided Engineering,2015,22(2):135-151. [12] AHMAD A M,KHAN G M,MAHMUD S A,et al. Breast cancer detection using Cartesian genetic programming evolved artificial neural networks[C]//Proceedings of the14th Annual Conference on Genetic and Evolutionary Computation. New York:ACM, 2012:1031-1038. [13] MANAZIR A, RAZA K. Recent developments in Cartesian genetic programming and its variants[J]. ACM Computing Surveys,2019,51(6):No. 122. [14] WALKER J A, MILLER J F. Evolution and acquisition of modules in Cartesian genetic programming[C]//Proceedings of the 7th European Conference on Genetic Programming,LNCS 3003. Berlin:Springer,2004:187-197. [15] HARDING S L,MILLER J F,BANZHAF W. Self-modifying Cartesian genetic programming[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation Conference. New York:ACM,2007:1021-1028. [16] TURNER A J, MILLER J F. Recurrent Cartesian genetic programming[C]//Proceedings of the 2014 International Conference on Parallel Problem Solving from Nature,LNCS 8672. Cham:Springer,2014:476-486. [17] CLEGG J, WALKER J A, MILLER J F. A new crossover technique for Cartesian genetic programming[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York:ACM,2007:1580-1587. [18] MILLER J F, SMITH S L. Redundancy and computational efficiency in Cartesian genetic programming[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(2):167-174. [19] 尚迪雅, 孙华, 洪振厚, 等. 基于无梯度进化的神经架构搜索算法研究综述[J]. 计算机工程,2020,46(9):16-26.(SHANG D Y,SUN H,HONG Z H,et al. Review of research on neural architecture search algorithms based on non-gradient evolution[J]. Computer Engineering,2020,46(9):16-26.) [20] RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A. Quasioppositional differential evolution[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Piscataway:IEEE, 2007:2229-2236. [21] TURNER A J, MILLER J F. Recurrent Cartesian genetic programming applied to famous mathematical sequence[EB/OL].[2020-04-05]. http://andrewjamesturner.co.uk/files/YDS2014.pdf. [22] KOZA J R. Genetic Programming:on the Programming of Computers by Means of Natural Selection[M]. Cambridge:MIT Press,1992:68-69. |
[1] | 侯阳 张琼 赵紫煊 朱正宇 张晓博. 基于YOLOv5s的复杂场景下高效烟火检测算法——YOLOv5s-MRD[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[2] | 张奇业, 曾心蕊. 带高斯核的支持向量数据描述问题的高效积极集法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3808-3814. |
[3] | 曹晓意 罗煦琼 李景 贺恩锋. 改进人工势场法下的多无人机编队路径规划方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[4] | 袁志超 杨磊 田井林 魏晓威 李康顺. 面向复杂约束多目标优化问题的双种群双阶段进化算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[5] | 冷琴, 毛政元. 考虑设施规模决策的两级选址-路径优化[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3513-3520. |
[6] | 彭庆媛, 王晓峰, 王军霞, 华盈盈, 唐傲, 何飞. 可满足性问题相变研究综述[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3503-3512. |
[7] | 孙仁科, 皇甫志宇, 陈虎, 李仲年, 许新征. 神经架构搜索综述[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 2983-2994. |
[8] | 孙安泰, 刘烨, 徐冬梅. 多智能体系统的动态面渐近补偿算法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3151-3157. |
[9] | 颜超英, 张紫仪, 曲映楠, 李秋禹, 郑地翔, 孙丽珺. 基于联盟链的双向拍卖碳交易[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3240-3245. |
[10] | 杨志龙 邹德旋 李灿 邵莹莹 马乐杰. 融入限制反向学习与柯西-高斯变异的蜣螂优化算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[11] | 姚光磊, 熊菊霞, 杨国武. 基于神经网络优化的花朵授粉算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2829-2837. |
[12] | 力尚龙, 刘建华, 贾鹤鸣. 融合多狩猎协调策略的爬行动物搜索算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2818-2828. |
[13] | 李焱, 潘大志, 郑思情. 多车场带时间窗车辆路径问题的改良自适应大邻域搜索算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1897-1904. |
[14] | 张倩婷 胡丽莹 陈黎飞. 时间序列的鲁棒形态表征方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[15] | 胡林波 倪志伟 程家乐 刘文涛 朱旭辉. 基于融合社区检测的复杂协作众包任务分配方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||