[1] 庄天戈. CT原理与算法[M]. 上海:上海交通大学出版社, 1992:30-61.(ZHUANG T G. CT Principle and Algorithm[M]. Shanghai:Shanghai Jiao Tong University Press, 1992:30-61.) [2] HSIEH J. 计算机断层成像技术:原理、设计、伪像和进展[M]. 张朝宗, 郭志平, 王贤刚, 等译. 北京:科学出版社, 2006:27-65. (HSIEH J. Computed Tomography:Principles, Design, Artifacts, and Recent Advances[M]. ZHANG C Z, GUO Z P, WANG X G, et al, translated. Beijing:Science Press, 2006:27-65.) [3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [4] CANDÈS E J, ROMBERG J, TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509. [5] PAN X C, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2009, 25(12):No. 1230009. [6] SIDKY E Y, KAO C M, PAN X C. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-Ray Science and Technology, 2006, 14(2):119-139. [7] SIDKY E Y, PAN X C. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17):4777-4807. [8] TIAN Z, JIA X, YUAN K H, et al. Low-dose CT reconstruction via edge-preserving total variation regularization[J]. Physics in Medicine and Biology, 2011, 56(18):5949-5967. [9] LIU Y, MA J H, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Physics in Medicine and Biology, 2012, 57(23):7923-7956. [10] ZHANG Y, ZHANG W H, CHEN H, et al. Few-view image reconstruction combining total variation and a high-order norm[J]. International Journal of Imaging Systems and Technology, 2013, 23(3):249-255. [11] ZHANG H M, YAN B, WANG L Y, et al. Sparse-view image reconstruction with nonlocal total variation[C]//Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference. Piscataway:IEEE, 2014:1-3. [12] SIDKY E Y, REISER I, NISHIKAWA R M, et al. Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization[C]//Proceedings of SPIE 6913, Medical Imaging 2008:Physics of Medical Imaging. Bellingham, WA:SPIE, 2008:No. 691328. [13] 杨一鸣, 刘祎, 桂志国. 基于字典学习与等效视数的低剂量CT伪影抑制算法[J]. 中北大学学报(自然科学版), 2019, 40(6):559-567.(YANG Y M, LIU Y, GUI Z G. Low-dose CT artifact suppression algorithm based on dictionary learning and equivalent number of looks[J]. Journal of North University of China(Natural Science Edition), 2019, 40(6):559-567.) [14] 武栋, 曾理. 低秩矩阵复原技术及在CT图像重建中的应用[C]//第十四届中国体视学与图像分析学术会议论文集. 北京:中国体视学学会, 2015:114-120.(WU D, ZENG L. Lowrank matrix recovery and its applications in CT reconstruction[C]//Proceedings of the 14th Chinese National Symposium for Stereology and Image Analysis. Beijing:Chinese Society for Stereology, 2015:114-120.) [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-10-16]. https://arxiv.org/pdf/1409.1556.pdf. [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [17] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [18] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [19] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:3431-3440. [20] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7):3142-3155. [21] TASSANO M, DELON J, VEIT T. An analysis and implementation of the FFDNet image denoising method[J]. Image Processing On Line, 2019, 9:1-25. [22] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 2018 Computer Vision, LNCS 11211. Cham:Springer, 2018:294-310. [23] HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[EB/OL].[2020-10-19]. https://arxiv.org/pdf/1611.06391.pdf. [24] HAN Y, YE J C. Framing U-Net via deep convolutional framelets:application to sparse-view CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(6):1418-1429. [25] JIN K H, McCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9):4509-4522. [26] XIE S P, ZHENG X Y, CHEN Y, et al. Artifact removal using improved GoogLeNet for sparse-view CT reconstruction[J]. Scientific Reports, 2018, 8(1):No. 6700. [27] ZHANG Z C, LIANG X K, DONG X, et al. A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution[J]. IEEE Transactions on Medical Imaging, 2018, 37(6):1407-1417. [28] GUAN S, KHAN A A, SIKDAR S, et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2):568-576. |