《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (9): 2845-2852.DOI: 10.11772/j.issn.1001-9081.2021071135
所属专题: 多媒体计算与计算机仿真
收稿日期:
2021-07-01
修回日期:
2021-09-07
接受日期:
2021-09-13
发布日期:
2021-09-18
出版日期:
2022-09-10
通讯作者:
廖列法
作者简介:
李志明(1995—),男,江西南昌人,硕士研究生,主要研究方向:图像检索;基金资助:
Liefa LIAO(), Zhiming LI, Saisai ZHANG
Received:
2021-07-01
Revised:
2021-09-07
Accepted:
2021-09-13
Online:
2021-09-18
Published:
2022-09-10
Contact:
Liefa LIAO
About author:
LI Zhiming, born in 1995, M. S. candidate. His research interests include image retrieval.Supported by:
摘要:
针对现有的哈希图像检索方法表达能力较弱、训练速度慢、检索精度低,难以适应大规模图像检索的问题,提出了一种基于深度残差网络的迭代量化哈希图像检索方法(DRITQH)。首先,使用深度残差网络对图像数据进行多次非线性变换,从而提取图像数据的特征,并获得具有语义特征的高维特征向量;然后,使用主成分分析(PCA)对高维图像特征进行降维,同时运用迭代量化对生成的特征向量进行二值化处理,更新旋转矩阵,将数据映射到零中心二进制超立方体,从而最小化量化误差并得到最佳的投影矩阵;最后,进行哈希学习,以得到最优的二进制哈希码在汉明空间中进行图像检索。实验结果表明,DRITQH在NUS-WIDE数据集上,对4种哈希码的检索精度分别为0.789、0.831、0.838和0.846,与改进深度哈希网络(IDHN)相比分别提升了0.5、3.8、3.7和4.2个百分点,平均编码时间小了1 717 μs。DRITQH在大规模图像检索时减少了量化误差带来的影响,提高了训练速度,实现了更高的检索性能。
中图分类号:
廖列法, 李志明, 张赛赛. 基于深度残差网络的迭代量化哈希图像检索方法[J]. 计算机应用, 2022, 42(9): 2845-2852.
Liefa LIAO, Zhiming LI, Saisai ZHANG. Image retrieval method based on deep residual network and iterative quantization hashing[J]. Journal of Computer Applications, 2022, 42(9): 2845-2852.
方法 | CIFAR-10 | NUS-WIDE | ImageNet | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
12 bit | 24 bit | 32 bit | 48 bit | 12 bit | 24 bit | 32 bit | 48 bit | 12 bit | 24 bit | 32 bit | 48 bit | |
ITQ | 0.158 | 0.169 | 0.172 | 0.175 | 0.452 | 0.468 | 0.472 | 0.477 | 0.244 | 0.352 | 0.428 | 0.482 |
LSH | 0.127 | 0.135 | 0.140 | 0.149 | 0.390 | 0.391 | 0.389 | 0.390 | 0.152 | 0.163 | 0.187 | 0.425 |
SH | 0.127 | 0.128 | 0.126 | 0.129 | 0.454 | 0.405 | 0.406 | 0.407 | 0.204 | 0.288 | 0.358 | 0.381 |
SDH | 0.286 | 0.332 | 0.345 | 0.358 | 0.567 | 0.610 | 0.601 | 0.639 | 0.401 | 0.552 | 0.619 | 0.656 |
KSH | 0.303 | 0.372 | 0.401 | 0.416 | 0.556 | 0.572 | 0.581 | 0.588 | 0.361 | 0.475 | 0.537 | 0.578 |
CNNH | 0.439 | 0.517 | 0.512 | 0.523 | 0.611 | 0.618 | 0.625 | 0.618 | 0.518 | 0.550 | 0.627 | 0.554 |
DFH | 0.752 | 0.773 | 0.791 | 0.802 | 0.775 | 0.816 | 0.825 | 0.844 | 0.631 | 0.698 | 0.726 | 0.747 |
IDHN | 0.744 | 0.746 | 0.768 | 0.781 | 0.784 | 0.793 | 0.801 | 0.804 | 0.729 | 0.750 | 0.764 | 0.769 |
DBDH | 0.767 | 0.790 | 0.779 | 0.782 | 0.802 | 0.832 | 0.836 | 0.841 | 0.618 | 0.728 | 0.745 | 0.761 |
DPN | 0.755 | 0.759 | 0.789 | 0.769 | 0.762 | 0.793 | 0.809 | 0.827 | 0.684 | 0.740 | 0.756 | 0.756 |
DRITQH | 0.789 | 0.801 | 0.822 | 0.827 | 0.789 | 0.831 | 0.838 | 0.846 | 0.714 | 0.763 | 0.776 | 0.781 |
表1 在三个数据集上不同哈希码长度的mAP值
Tab. 1 mAP values of hash code with different lengths on three datasets
方法 | CIFAR-10 | NUS-WIDE | ImageNet | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
12 bit | 24 bit | 32 bit | 48 bit | 12 bit | 24 bit | 32 bit | 48 bit | 12 bit | 24 bit | 32 bit | 48 bit | |
ITQ | 0.158 | 0.169 | 0.172 | 0.175 | 0.452 | 0.468 | 0.472 | 0.477 | 0.244 | 0.352 | 0.428 | 0.482 |
LSH | 0.127 | 0.135 | 0.140 | 0.149 | 0.390 | 0.391 | 0.389 | 0.390 | 0.152 | 0.163 | 0.187 | 0.425 |
SH | 0.127 | 0.128 | 0.126 | 0.129 | 0.454 | 0.405 | 0.406 | 0.407 | 0.204 | 0.288 | 0.358 | 0.381 |
SDH | 0.286 | 0.332 | 0.345 | 0.358 | 0.567 | 0.610 | 0.601 | 0.639 | 0.401 | 0.552 | 0.619 | 0.656 |
KSH | 0.303 | 0.372 | 0.401 | 0.416 | 0.556 | 0.572 | 0.581 | 0.588 | 0.361 | 0.475 | 0.537 | 0.578 |
CNNH | 0.439 | 0.517 | 0.512 | 0.523 | 0.611 | 0.618 | 0.625 | 0.618 | 0.518 | 0.550 | 0.627 | 0.554 |
DFH | 0.752 | 0.773 | 0.791 | 0.802 | 0.775 | 0.816 | 0.825 | 0.844 | 0.631 | 0.698 | 0.726 | 0.747 |
IDHN | 0.744 | 0.746 | 0.768 | 0.781 | 0.784 | 0.793 | 0.801 | 0.804 | 0.729 | 0.750 | 0.764 | 0.769 |
DBDH | 0.767 | 0.790 | 0.779 | 0.782 | 0.802 | 0.832 | 0.836 | 0.841 | 0.618 | 0.728 | 0.745 | 0.761 |
DPN | 0.755 | 0.759 | 0.789 | 0.769 | 0.762 | 0.793 | 0.809 | 0.827 | 0.684 | 0.740 | 0.756 | 0.756 |
DRITQH | 0.789 | 0.801 | 0.822 | 0.827 | 0.789 | 0.831 | 0.838 | 0.846 | 0.714 | 0.763 | 0.776 | 0.781 |
1 | 余若晟,徐超,张帆. 大规模人脸检索系统设计与实现[J]. 计算机应用与软件, 2021, 38(3):119-123. 10.3969/j.issn.1000-386x.2021.03.018 |
YU R S, XU C, ZHANG F. Design and implementation of large-scale face retrieval system[J]. Computer Applications and Software, 2021, 38(3):119-123. 10.3969/j.issn.1000-386x.2021.03.018 | |
2 | 周晔,张军平. 基于多尺度深度学习的商品图像检索[J]. 计算机研究与发展, 2017, 54(8):1824-1832. 10.7544/issn1000-1239.2017.20170197 |
ZHOU Y, ZHANG J P. Multi-scale deep learning for product image search[J]. Journal of Computer Research and Development, 2017, 54(8):1824-1832. 10.7544/issn1000-1239.2017.20170197 | |
3 | 苏卓,柯司博,王若梅,等. 深度多模态融合服装风格检索[J]. 中国图象图形学报, 2021, 26(4):857-871. 10.11834/jig.200193 |
SU Z, KE S B, WANG R M, et al. Fashion style retrieval based on deep multimodal fusion[J]. Journal of Image and Graphics, 2021, 26(4):857-871. 10.11834/jig.200193 | |
4 | 秦品乐,李启,曾建潮,等. 基于多尺度密集网络的肺结节图像检索算法[J]. 计算机应用, 2019, 39(2):392-397. 10.11772/j.issn.1001-9081.2018071451 |
QIN P L, LI Q, ZENG J C, et al. Image retrieval algorithm for pulmonary nodules based on multi-scale dense network[J]. Journal of Computer Applications, 2019, 39(2):392-397. 10.11772/j.issn.1001-9081.2018071451 | |
5 | 苗建辉,栗志扬,周泽艳,等. 比特串划分多索引的近邻搜索算法[J].计算机辅助设计与图形学学报, 2019, 31(5): 771-779. 10.3724/sp.j.1089.2019.17341 |
MIAO J H, LI Z Y, ZHOU Z Y, et al. Nearest neighbor search based on bit string partition and multiple index[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(5): 771-779. 10.3724/sp.j.1089.2019.17341 | |
6 | 杨粟,欧阳智,杜逆索. 基于相关度距离的无监督并行哈希图像检索[J]. 计算机应用, 2021, 41(7):1902-1907. 10.3390/info12070285 |
YANG S, OUYANG Z, DU N S. Unsupervised parallel hash image retrieval based on correlation distance[J]. Journal of Computer Applications, 2021, 41(7): 1902-1907. 10.3390/info12070285 | |
7 | 马敏耀,徐艺,刘卓. 隐私保护DNA序列汉明距离计算问题[J]. 计算机应用, 2019, 39(9):2636-2640. 10.11772/j.issn.1001-9081.2019020247 |
MA M Y, XU Y, LIU Z. Privacy preserving Hamming distance computing problem of DNA sequences[J]. Journal of Computer Applications, 2019, 39(9): 2636-2640. 10.11772/j.issn.1001-9081.2019020247 | |
8 | SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. 10.1016/j.neunet.2014.09.003 |
9 | 刘颖,程美,王富平,等. 深度哈希图像检索方法综述[J]. 中国图象图形学报, 2020, 25(7):1296-1317. |
LIU Y, CHENG M, WANG F P, et al. Deep Hashing image retrieval methods[J]. Journal of Image and Graphics, 2020, 25(7):1296-1317. | |
10 | ZHENG L, YANG Y, TIAN Q. SIFT meets CNN: a decade survey of instance retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1224-1244. 10.1109/tpami.2017.2709749 |
11 | XIA R K, PAN Y, LAI H J, et al. Supervised hashing for image retrieval via image representation learning[C]// Proceedings of the 28th AAAI conference on artificial intelligence. Palo Alto, CA: AAAI Press, 2014:2156-2162. 10.1609/aaai.v28i1.8952 |
12 | LAI H J, PAN Y, LIU Y, et al. Simultaneous feature learning and hash coding with deep neural networks[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3270-3278. 10.1109/cvpr.2015.7298947 |
13 | ALZU’BI A, AMIRA A, RAMZAN N. Content-based image retrieval with compact deep convolutional features[J]. Neurocomputing, 2017, 249: 95-105. 10.1016/j.neucom.2017.03.072 |
14 | CONJETI S, ROY A G, KATOUZIAN A, et al. Hashing with residual networks for image retrieval[C]// Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham: Springer, 2017: 541-549. |
15 | LIN K, LU J W, CHEN C S, et al. Learning compact binary descriptors with unsupervised deep neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1183-1192. 10.1109/cvpr.2016.133 |
16 | DO T T, DOAN A D, CHEUNG N M. Learning to hash with binary deep neural network[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9909. Cham: Springer, 2016: 219-234. |
17 | ZHANG H F, LIU L, LONG Y, et al. Unsupervised deep hashing with pseudo labels for scalable image retrieval[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1626-1638. 10.1109/tip.2017.2781422 |
18 | GONG Y C, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929. 10.1109/tpami.2012.193 |
19 | 曹路,杨文强. 基于离散监督哈希的相似性检索算法[J]. 科学技术与工程, 2017, 17(26):245-250. 10.3969/j.issn.1671-1815.2017.26.040 |
CAO L, YANG W Q. Similarity search method based on discrete supervised hashing[J]. Science Technology and Engineering, 2017, 17(26):245-250. 10.3969/j.issn.1671-1815.2017.26.040 | |
20 | LIU H M, WANG R P, SHAN S G, et al. Deep supervised hashing for fast image retrieval[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2064-2072. 10.1109/cvpr.2016.227 |
21 | 崔文成,徐盼盼,邵虹. 基于双线性迭代量化的哈希图像检索方法[J]. 计算机应用研究, 2020, 37(8):2284-2287. |
CUI W C, XU P P, SHAO H. Hashing image retrieval based on bilinear iterative quantization[J]. Application Research of Computers, 2020, 37(8):2284-2287. | |
22 | LIU Z F, CHEN F, DUAN S K. Distributed fast supervised discrete hashing[J]. IEEE Access, 2019, 7: 90003-90011. 10.1109/access.2019.2924996 |
23 | ZHANG Z, ZOU Q, LIN Y W, et al. Improved deep hashing with soft pairwise similarity for multi-label image retrieval[J]. IEEE Transactions on Multimedia, 2020, 22(2): 540-553. 10.1109/tmm.2019.2929957 |
24 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
25 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015:1-9. 10.1109/cvpr.2015.7298594 |
26 | KRIZHEVSKY A. Learning multiple layers of features from tiny images[R/OL]. (2009-04-08) [2021-04-20].. |
27 | CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE: a real-world Web image database from national university of Singapore[C]// Proceedings of the 2009 ACM International Conference on Image and Video Retrieval. New York: ACM, 2009: No.48. 10.1145/1646396.1646452 |
28 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. 10.1007/s11263-015-0816-y |
29 | WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2008:1753-1760. |
30 | ANDONI A, INDYK P, NGUYEN H L, et al. Beyond locality-sensitive hashing[C]// Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014: 1018-1028. 10.1137/1.9781611973402.76 |
31 | LIU W, WANG J, JI R R, et al. Supervised hashing with kernels[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2074-2081. 10.1109/cvpr.2012.6247912 |
32 | ZHENG X T, ZHANG Y C, LU X Q. Deep balanced discrete hashing for image retrieval[J]. Neurocomputing, 2020, 403: 224-236. 10.1016/j.neucom.2020.04.037 |
33 | LI Y Q, PEI W J, ZHA Y F, et al. Push for quantization: deep fisher hashing[C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: No.938. |
34 | FAN L X, NG K W, JU C, et al. Deep polarized network for supervised learning of accurate binary hashing codes[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 825-831. 10.24963/ijcai.2020/115 |
[1] | 韩亚茹, 闫连山, 姚涛. 基于元学习的深度哈希检索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2015-2021. |
[2] | 贺怀清, 闫建青, 惠康华. 基于深度残差网络的轻量级人脸识别方法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2030-2036. |
[3] | 杨粟, 欧阳智, 杜逆索. 基于相关度距离的无监督并行哈希图像检索[J]. 计算机应用, 2021, 41(7): 1902-1907. |
[4] | 任奕茗, 王让定, 严迪群, 林昱臻. 基于深度残差网络的语音隐写分析方法[J]. 计算机应用, 2021, 41(3): 774-779. |
[5] | 钟莎, 黄玉清. 基于孪生区域候选网络的无人机指定目标跟踪[J]. 计算机应用, 2021, 41(2): 523-529. |
[6] | 陈朗, 王让定, 严迪群, 林昱臻. 融合残差网络和极限梯度提升的音频隐写检测模型[J]. 计算机应用, 2021, 41(2): 449-455. |
[7] | 陆荣秀, 陈明明, 杨辉, 朱建勇. 基于溶液图像时序特征的元素组分含量动态监测系统[J]. 计算机应用, 2021, 41(10): 3075-3081. |
[8] | 余英东, 杨怡, 林澜. 结合纹理特征分析的图像风格转换网络[J]. 计算机应用, 2020, 40(3): 638-644. |
[9] | 顾军华, 王锋, 戚永军, 孙哲然, 田泽培, 张亚娟. 基于多尺度卷积特征融合的肺结节图像检索方法[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 561-565. |
[10] | 张美玲, 吴俊峰, 于红, 崔榛, 董婉婷. 基于颜色四通道及空间金字塔的鱼类图像检索[J]. 计算机应用, 2019, 39(5): 1466-1472. |
[11] | 秦品乐, 李启, 曾建潮, 张娜, 宋宇龙. 基于多尺度密集网络的肺结节图像检索算法[J]. 计算机应用, 2019, 39(2): 392-397. |
[12] | 陈宏宇, 邓德祥, 颜佳, 范赐恩. 基于显著性语义区域加权的图像检索算法[J]. 计算机应用, 2019, 39(1): 136-142. |
[13] | 杨晓玲, 李志清, 刘雨桐. 基于多标签判别字典学习的图像自动标注[J]. 计算机应用, 2018, 38(5): 1294-1298. |
[14] | 汪鹏, 张奥帆, 王利琴, 董永峰. 基于迁移学习与多标签平滑策略的图像自动标注[J]. 计算机应用, 2018, 38(11): 3199-3203. |
[15] | 朱杰, 张俊三, 吴树芳, 董宇坤, 吕琳. 基于多中心卷积特征加权的图像检索方法[J]. 计算机应用, 2018, 38(10): 2778-2781. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||