[1] ZHENG L, YANG Y, TIAN Q. SIFT meets CNN:a decade survey of instance retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5):1224-1244. [2] 董健.基于加权特征空间信息视觉词典的图像检索模型[J].计算机应用,2014,34(4):1172-1176.(DONG J. Visual vocabulary with weighted feature space information based image retrieval model[J]. Journal of Computer Applications, 2014, 34(4):1172-1176.) [3] LOWE D G. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York:ACM, 2012:1097-1105. [5] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):1137-1149. [7] 姜枫,顾庆,郝慧珍,等.基于内容的图像分割方法综述[J].软件学报,2017,28(1):160-183.(JIANG F, GU Q, HAO H Z, et al. Survey on content-based image segmentation methods[J]. Journal of Software, 2017, 28(1):160-183.) [8] ARYA S, MOUNT D M, NETANYAHU N S, et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions[J]. Journal of the ACM, 1998, 45(6):891-923. [9] 刘兵,张鸿.基于卷积神经网络和流形排序的图像检索算法[J].计算机应用,2016,36(2):531-534.(LIU B, ZHANG H. Image retrieval algorithm based on convolutional neural network and manifold ranking[J]. Journal of Computer Applications, 2016, 36(2):531-534.) [10] BABENKO A, SLESAREV A, CHIGORIN A, et al. Neural codes for image retrieval[C]//Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:584-599. [11] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN Features off-the-shelf:an astounding baseline for recognition[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:512-519. [12] KALANTIDIS Y, MELLINA C, OSINDERO S. Cross-dimensional weighting for aggregated deep convolutional features[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:685-701. [13] RADENOVIC F, TOLIAS G, CHUM O. CNN image retrieval learns from BoW:unsupervised fine-tuning with hard examples[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:3-20. [14] GORDO A, ALMAZÁN J, REVAUD J, et al. Deep image retrieval:learning global representations for image search[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:241-257. [15] XU J, SHI C, QI C, et al. Unsupervised part-based weighting aggregation of deep convolutional features for image retrieval[C]//AAAI 2018:Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI, 2018:7436-7443. [16] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:818-833. [17] SELVARAJU R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:618-626. [18] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:346-361. [19] CHENG M M, ZHANG Z, LIN W Y, et al. BING:binarized normed gradients for objectness estimation at 300fps[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:3286-3293. [20] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:2980-2988. [21] BEEL J, GIPP B, LANGER S, et al. Research-paper recommender systems:a literature survey[J]. International Journal on Digital Libraries, 2016, 17(4):305-338. [22] TOLIAS G, SICRE R, JÉGOU H. Particular object retrieval with integral max-pooling of CNN activations[EB/OL]. (2016-02-24)[2018-05-21]. https://arxiv.org/abs/1511.05879. [23] RAZAVIAN A S, SULLIVAN J, CARLSSON S, et al. Visual instance retrieval with deep convolutional networks[J]. ITE Transactions on Media Technology and Applications, 2016,4(3):251-258. [24] BABENKO A, LEMPITSKY V. Aggregating local deep features for image retrieval[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:1269-1277. [25] JÉGOU H, CHUM O. Negative evidences and co-occurences in image retrieval:the benefit of PCA and whitening[C]//Proceedings of the 2012 European Conference on Computer Vision. Berlin:Springer, 2012:774-787. [26] CHUM O, MIKULIK A, PERDOCH M, et al. Total recall Ⅱ:query expansion revisited[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2011:889-896. [27] PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2007:1-8. [28] PHILBIN J, CHUM O, ISARD M, et al. Lost in quantization:improving particular object retrieval in large scale image databases[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2008:1-8. [29] EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al. The Pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [30] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2018-05-21]. https://arxiv.org/abs/1409.1556. [31] JÉGOU H, ZISSERMAN A. Triangulation embedding and democratic aggregation for image search[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:3310-3317. [32] DO T T, TRAN Q D, CHEUNG N M. FAemb:a function approximation-based embedding method for image retrieval[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:3556-3564. [33] HUSAIN S, BOBER M. Improving large-scale image retrieval through robust aggregation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9):1783-1796. [34] XIE L, ZHENG L, WANG J, et al. Interactive:Inter-layer activeness propagation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:270-279. [35] ARANDJELOVIC R, GRONAT P, TORⅡ A, et al. NetVLAD:CNN architecture for weakly supervised place recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:5297-5307. |