| 1 | 芮孝芳.论流域水文模型[J].水利水电科技进展,2017,37(4):1-7,58.  10.3880/j.issn.1006-7647.2017.04.001 | 
																													
																						|  | RUI X F. Discussion of watershed hydrological model [J]. Advances in Science and Technology of Water Resources, 2017, 37(4): 1-7, 58.  10.3880/j.issn.1006-7647.2017.04.001 | 
																													
																						| 2 | 黎云云,畅建霞,金文婷,等.基于SWAT模型的渭河流域分区径流模拟研究[J].西北农林科技大学学报(自然科学版),2017,45(4):204-212.  10.13207/j.cnki.jnwafu.2017.04.028 | 
																													
																						|  | LI Y Y, CHANG J X, JIN W T, et al. Runoff simulation in subzones of the Wei River Basin based on the SWAT model [J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(4): 204-212.  10.13207/j.cnki.jnwafu.2017.04.028 | 
																													
																						| 3 | ZOUNEMAT-KERMANI M, MATTA E, COMINOLA A, et al. Neurocomputing in surface water hydrology and hydraulics: a review of two decades retrospective, current status and future prospects [J]. Journal of Hydrology, 2020, 588: Article No.125085.  10.1016/j.jhydrol.2020.125085 | 
																													
																						| 4 | DAWSON C W, ABRAHART R J, SHAMSELDIN A Y, et al. Flood estimation at ungauged sites using artificial neural networks [J]. Journal of Hydrology, 2006, 319(1/2/3/4): 391-409.  10.1016/j.jhydrol.2005.07.032 | 
																													
																						| 5 | HALFF A H, HALFF H M, AZMOODEH M. Predicting runoff from rainfall using neural networks [C]// Proceedings of the 1993 Symposium: Engineering Hydrology. New York: American Society of Civil Engineers, 1993: 760-765. | 
																													
																						| 6 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation [M]// COLLINS A, SMITH E E. Readings in Cognitive Science: A Perspective from Psychology and Artificial Intelligence. San Francisco: Morgan Kaufmann, 1988: 399-421.  10.1016/b978-1-4832-1446-7.50035-2 | 
																													
																						| 7 | CARRIERE P, MOHAGHEGH S, GASKARI R. Performance of a virtual runoff hydrograph system [J]. Journal of Water Resources Planning and Management, 1996, 122(6): 421-427.  10.1061/(asce)0733-9496(1996)122:6(421) | 
																													
																						| 8 | HSU K L, GUPTA H V, SOROOSHIAN S. Application of a recurrent neural network to rainfall-runoff modeling [C]// Proceedings of the 1997 24th Annual Water Resources Planning and Management Conference. New York: American Society of Civil Engineers, 1997: 68-73. | 
																													
																						| 9 | NAGESH KUMAR D, SRINIVASA RAJU K, SATHISH T. River flow forecasting using recurrent neural networks [J]. Water Resources Management, 2004, 18(2): 143-161.  10.1023/b:warm.0000024727.94701.12 | 
																													
																						| 10 | BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult [J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.  10.1109/72.279181 | 
																													
																						| 11 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.  10.1162/neco.1997.9.8.1735 | 
																													
																						| 12 | KRATZERT F, KLOTZ D, BRENNER C, et al. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks [J]. Hydrology and Earth System Sciences, 2018, 22(11): 6005-6022.  10.5194/hess-22-6005-2018 | 
																													
																						| 13 | ZHANG D, LINDHOLM G, RATNAWEER H. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring [J]. Journal of Hydrology, 2018, 556: 409-418.  10.1016/j.jhydrol.2017.11.018 | 
																													
																						| 14 | 朱跃龙,赵群,余宇峰,等.基于时空特征挖掘的流量过程智能模拟方法[J].河海大学学报(自然科学版),2021,49(1):7-12.  10.3876/j.issn.1000-1980.2021.01.002 | 
																													
																						|  | ZHU Y L, ZHAO Q, YU Y F, et al. Intelligent simulation method of runoff process based on spatiotemporal feature mining[J]. Journal of Hohai University (Natural Sciences), 2021, 49(1): 7-12.  10.3876/j.issn.1000-1980.2021.01.002 | 
																													
																						| 15 | YIN Z K, LIAO W H, LEI X H, et al. Comparing the hydrological responses of conceptual and process-based models with varying rain gauge density and distribution [J]. Sustainability, 2018, 10(9): Article No.3209.  10.3390/su10093209 | 
																													
																						| 16 | CHAKRABORTY S, TOMSETT R, RAGHAVENDRA R, et al. Interpretability of deep learning models: a survey of results [C]// Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. Piscataway: IEEE: 2017: 1-6.  10.1109/uic-atc.2017.8397411 | 
																													
																						| 17 | M van der LAURENS, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. | 
																													
																						| 18 | RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?”: explaining the predictions of any classifier [C]// Proceedings of the 2016 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York: ACM, 2016: 1135-1144.  10.1145/2939672.2939778 | 
																													
																						| 19 | SAMEK W, BINDER A, MONTAVON G, et al. Evaluating the visualization of what a deep neural network has learned [J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(11): 2660-2673.  10.1109/tnnls.2016.2599820 | 
																													
																						| 20 | CHOI E, BAHADORI M T, KULAS J A, et al. RETAIN: interpretable predictive model in healthcare using reverse time attention mechanism [C]// Proceedings of the 2016 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3512-3520. | 
																													
																						| 21 | 王天罡,张晓滨,马红叶,等.可解释的层次注意力机制网络危重症预警[J].计算机工程与应用,2021,57(5):131-138. | 
																													
																						|  | WANG T G, ZHANG X B, MA H Y, et al. Early warning of critical illness based on explicable hierarchical attention mechanism [J]. Computer Engineering and Applications, 2021, 57(5): 131-138. | 
																													
																						| 22 | DING Y K, ZHU Y L, FENG J, et al. Interpretable spatio-temporal attention LSTM model for flood forecasting [J]. Neurocomputing, 2020, 403: 348-359.  10.1016/j.neucom.2020.04.110 | 
																													
																						| 23 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2021-03-09]. . | 
																													
																						| 24 | ZHU L P, WAN B H, LI C Y, et al. Dyadic relational graph convolutional networks for skeleton-based human interaction recognition [J]. Pattern Recognition, 2021, 115: Article No.107920.  10.1016/j.patcog.2021.107920 | 
																													
																						| 25 | 夏军,谢平.论概念性元素的推移和坦化作用[J].水利学报,1995(10):65-68. | 
																													
																						|  | XIA J, XIE P. On the transposition and attenuation of conceptual elements [J]. Journal of Hydraulic Engineering, 1995(10): 65-68. | 
																													
																						| 26 | YAO C, LI Z J, YU Z B, et al. A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information [J]. Journal of Hydrology, 2012, 468/487/488/469: 47-62.  10.1016/j.jhydrol.2012.08.025 | 
																													
																						| 27 | 王斌,黄金柏,宫兴龙.基于HWSD的流域栅格土壤水分常数估算[J].水文,2015,35(2):8-11.  10.3969/j.issn.1000-0852.2015.02.002 | 
																													
																						|  | WANG B, HUANG J B, GONG X L. Grid soil moisture constants estimation based on HWSD over basin [J]. Journal of China Hydrology, 2015, 35(2): 8-11.  10.3969/j.issn.1000-0852.2015.02.002 | 
																													
																						| 28 | 杨哲,张行南,夏达忠,等.基于包气带厚度的流域蓄水容量计算及水文模拟[J].水力发电学报,2015,34(3):8-13. | 
																													
																						|  | YANG Z, ZHANG X N, XIA D Z, et al. Calculation of maximum thickness of unsaturated zone and modeling of hydrological process in Xingxing watershed [J]. Journal of Hydroelectric Engineering, 2015, 34(3): 8-13. | 
																													
																						| 29 | QIN Y, SONG D J, CHEN H F, et al. A dual-stage attention-based recurrent neural network for time series prediction [C]// Proceedings of the 2017 26th International Joint Conference on Artificial Intelligence. California: IJCAI Organization, 2017: 2627-2633.  10.24963/ijcai.2017/366 |