《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (5): 1634-1641.DOI: 10.11772/j.issn.1001-9081.2021050745
收稿日期:
2021-05-10
修回日期:
2021-09-12
接受日期:
2021-12-21
发布日期:
2022-03-08
出版日期:
2022-05-10
通讯作者:
刘延飞
作者简介:
刘延飞(1975—),男,陕西咸阳人,教授,博士,主要研究方向:最优控制、嵌入式系统 bbmcu@126.com基金资助:
Yanfei LIU(), Zheng PENG, Yihui WANG, Zhong WANG
Received:
2021-05-10
Revised:
2021-09-12
Accepted:
2021-12-21
Online:
2022-03-08
Published:
2022-05-10
Contact:
Yanfei LIU
About author:
LIU Yanfei, born in 1975, Ph. D., professor. His researchinterests include optimum control,embedded system.Supported by:
摘要:
针对有刷直流(DC)电机的比例积分微分(PID)参数整定工作复杂耗时的问题,提出了一种基于改进型遗传算法(GA)的PID参数整定方法。首先,提出了适应度增强淘汰法则,改进了传统GA的选择过程;然后,提出了基因感染交叉方法,保证了进化过程中平均适应度值的增加;最后,删除了传统GA中不必要的复制操作,提升了算法的运行速度。通过电机传递函数进行建模和仿真分析。实验结果表明,与常规整定方法相比,所提改进型GA能够显著提升PID参数整定效果,且改进型GA相较于传统GA,达到同样进化效果所需的进化代数减少了79%,算法运行速度提升了4.1%。所提出的改进型GA从选择和交叉两个关键操作步骤对GA进行了改进,并应用于PID参数整定使得上升时间更少、稳定时间更短、过冲更小。
中图分类号:
刘延飞, 彭征, 王艺辉, 王忠. 基于改进的遗传算法的有刷直流电机PID参数整定[J]. 计算机应用, 2022, 42(5): 1634-1641.
Yanfei LIU, Zheng PENG, Yihui WANG, Zhong WANG. PID parameter tuning of brushed direct-current motor based on improved genetic algorithm[J]. Journal of Computer Applications, 2022, 42(5): 1634-1641.
参数 | 值 |
---|---|
电阻 | 0.476 |
电驱电感 | 0.200 |
转矩常数 | 3.87 |
阻尼系数 | 4.16 |
反电动势系数 | 4.00 |
系统转动惯量 | 4.40 |
表1 直流电机的参数
Tab. 1 Parameters of DC motor
参数 | 值 |
---|---|
电阻 | 0.476 |
电驱电感 | 0.200 |
转矩常数 | 3.87 |
阻尼系数 | 4.16 |
反电动势系数 | 4.00 |
系统转动惯量 | 4.40 |
参数 | 值 |
---|---|
种群大小 | 220 |
进化代数 | 70 |
交叉率 | 0.5 |
变异率 | 0.005 |
(0,5) | |
(0,4) | |
(0,6) |
表2 GA 和 EIGA的参数
Tab. 2 Parameters of GA and EIGA
参数 | 值 |
---|---|
种群大小 | 220 |
进化代数 | 70 |
交叉率 | 0.5 |
变异率 | 0.005 |
(0,5) | |
(0,4) | |
(0,6) |
方法 | 上升时间/s | 稳定时间/s | 过冲/% |
---|---|---|---|
AC | 0.176 5 | 1.818 2 | 0.408 6 |
ZN | 2.240 9 | 4.033 6 | 0.067 8× |
CC | 0.515 0 | 2.188 8 | 0.231 5 |
IMC | 0.666 7 | 4.111 1 | 0.078 2 |
GA | 0.012 4 | 0.008 0 | 8.769 4× |
EIGA | 0.008 9 | 0.005 2 | 2.426 2× |
表3 不同方法下的系统响应性能
Tab. 3 System response performance under different methods
方法 | 上升时间/s | 稳定时间/s | 过冲/% |
---|---|---|---|
AC | 0.176 5 | 1.818 2 | 0.408 6 |
ZN | 2.240 9 | 4.033 6 | 0.067 8× |
CC | 0.515 0 | 2.188 8 | 0.231 5 |
IMC | 0.666 7 | 4.111 1 | 0.078 2 |
GA | 0.012 4 | 0.008 0 | 8.769 4× |
EIGA | 0.008 9 | 0.005 2 | 2.426 2× |
方法 | |||
---|---|---|---|
AC | 0.158 8 | 0.636 9 | 0.013 2 |
ZN | 0.002 8 | 0.009 0 | 1.067 9 |
CC | 0.034 1 | 0.063 4 | 0.003 7 |
IMC | 0.031 0 | 0.019 0 | 0.001 2 |
GA | 3.565 5 | 3.981 4 | 1.086 9 |
EIGA | 4.824 8 | 3.995 0 | 1.686 8 |
表4 不同方法整定的PID参数
Tab. 4 PID parameters tuned by different methods
方法 | |||
---|---|---|---|
AC | 0.158 8 | 0.636 9 | 0.013 2 |
ZN | 0.002 8 | 0.009 0 | 1.067 9 |
CC | 0.034 1 | 0.063 4 | 0.003 7 |
IMC | 0.031 0 | 0.019 0 | 0.001 2 |
GA | 3.565 5 | 3.981 4 | 1.086 9 |
EIGA | 4.824 8 | 3.995 0 | 1.686 8 |
方法 | 最高适应度值的比例 | ||||
---|---|---|---|---|---|
60% | 90% | 95% | 99% | 100% | |
GA | 7 | 75 | 86 | — | — |
EIGA | 2 | 8 | 18 | 159 | 166 |
表5 对应适应度值的进化代数
Tab. 5 Generation number corresponding to fitness value
方法 | 最高适应度值的比例 | ||||
---|---|---|---|---|---|
60% | 90% | 95% | 99% | 100% | |
GA | 7 | 75 | 86 | — | — |
EIGA | 2 | 8 | 18 | 159 | 166 |
1 | YAN W B, WANG D D, JIA P F, et al. The PWM speed regulation of DC motor based on intelligent control [J]. Systems Engineering Procedia, 2012, 3: 259-267. 10.1016/j.sepro.2011.11.028 |
2 | DIMEAS I, PETRAS I, PSYCHALINOS C. New analog implementation technique for fractional-order controller: a DC motor control [J]. AEU — International Journal of Electronics and Communications, 2017, 78: 192-200. 10.1016/j.aeue.2017.03.010 |
3 | 李昊伦.基于PLC的小型履带式农用动力底盘控制系统设计[D].保定:河北农业大学,2021:19-20. |
LI H L. Design of small crawler type agricultural power chassis control system based on PLC [D]. Baoding: Hebei Agricultural University, 2021: 19-20. | |
4 | 赵天才,余洪锋,郝向泽,等.基于PID算法的水稻直播机播量控制系统的设计与试验[J].华南农业大学学报,2019,40(2):118-125. 10.7671/j.issn.1001-411X.201805007 |
ZHAO T C, YU H F, HAO X Z, et al. Design and experiment of sowing control system for rice direct seeder based on PID algorithm [J]. Journal of South China Agricultural University, 2019, 40(2):118-125 . 10.7671/j.issn.1001-411X.201805007 | |
5 | 吕东阳,王显军.基于模糊PID控制的电机转台伺服系统[J].计算机应用,2014,34(S1):166-168,185. |
LYU D Y, WANG X J. Servo motor system based on fuzzy PID control [J]. Journal of Computer Applications, 2014, 34(S1):166-168, 185. | |
6 | 黄玉钏,曲道奎,徐方,等.伺服电机的预测控制与比例-积分-微分控制[J].计算机应用,2012,32(10):2944-2947. 10.3724/SP.J.1087.2012.02944 |
HUANG Y C, QU D K, XU F, et al. Model predictive control and PID control on servo motor [J]. Journal of Computer Applications, 2012, 32(10): 2944-2947. 10.3724/SP.J.1087.2012.02944 | |
7 | CIVELEK Z, LÜY M, ÇAM E, et al. Control of pitch angle of wind turbine by fuzzy PID controller [J]. Intelligent Automation and Soft Computing, 2016, 22(3): 463-471. 10.1080/10798587.2015.1095417 |
8 | MAMUR H. Design, application, and power performance analyses of a micro wind turbine [J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2015, 23(6): 1619-1637. 10.3906/elk-1401-174 |
9 | 于国强,刘克天,胡尊民,等.基于Ziegler-Nichols优化算法的火电机组负荷频率PID控制研究[J].热力发电,2021,50(9):137-144. |
YU G Q, LIU K T, HU Z M, et al. PID control of load frequency of thermal power unit based on Ziegler-Nichols optimization algorithm [J]. Thermal Power Generation, 2021, 50(9): 137-144. | |
10 | BRITO A G. On the misunderstanding of the Ziegler-Nicholsʼs formulae usage [J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 142-147. 10.1109/jas.2019.1911336 |
11 | FIŠER J, ZÍTEK P. PID controller tuning via dominant pole placement in comparison with Ziegler-Nichols tuning [J]. IFAC-PapersOnLine, 2019, 52(18): 43-48. 10.1016/j.ifacol.2019.12.204 |
12 | ISDARYANI F, FERIYONIKA F, FERDIANSYAH R. Comparison of Ziegler-Nichols and Cohen Coon tuning method for magnetic levitation control system [J]. Journal of Physics: Conference Series, 2020, 1450: Article No.012033. 10.1088/1742-6596/1450/1/012033 |
13 | GAMASU R, JASTI V R B. Robust Cohen-Coon PID controller for flexibility of double link manipulator [J]. International Journal of Control and Automation, 2014, 7(1): 357-368. 10.14257/ijca.2014.7.1.32 |
14 | 盛锴,邱靖,周刚,等.基于IMC-PID的超临界火电机组AGC性能优化[J/OL].控制工程.(2021-01-18)[2021-09-09].. |
SHENG K, QIU J, ZHOU G, et al. Performance optimization of supercritical thermal power unit’s automatic generation control based on IMC-PID [J/OL]. Control Engineering of China. (2021-01-18) [2021-09-09]. . | |
15 | SHAMSUZZOHA M. IMC based robust PID controller tuning for disturbance rejection [J]. Journal of Central South University, 2016, 23(3): 581-597. 10.1007/s11771-016-3105-1 |
16 | BEGUM K G, RAO A S, RADHAKRISHNAN T K. Enhanced IMC based PID controller design for Non-Minimum Phase (NMP) integrating processes with time delays [J]. ISA Transactions, 2017, 68: 223-234. 10.1016/j.isatra.2017.03.005 |
17 | WANG W B, LIU D Y, YAO Y Q. Study of PID control algorithm based on the critical ratio method [J]. Applied Mechanics and Materials, 2014, 494/495: 1246-1248. 10.4028/www.scientific.net/amm.494-495.1246 |
18 | XIA C G, CAO C. Tuning of PID parameters and fuzzy adaptive PID control of the hydrostatic driving system [J]. Advanced Materials Research, 2012, 403/404/405/406/407/408: 5112-5116. 10.4028/www.scientific.net/amr.403-408.5112 |
19 | ANG K H, CHONG G, LI Y. PID control system analysis, design, and technology [J]. IEEE Transactions on Control Systems Technology, 2005, 13(4): 559-576. |
20 | 黄书召,田军委,乔路,等.基于改进遗传算法的无人机路径规划[J].计算机应用,2021,41(2):390-397. |
HUANG S Z, TIAN J W, QIAO L, et al. Unmanned aerial vehicle path planning based on improved genetic algorithm [J]. Journal of Computer Applications, 2021, 41(2):390-397. | |
21 | ZHONG S S, XIE X L, LIN L, et al. Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction [J]. Neurocomputing, 2017, 238: 191-204. 10.1016/j.neucom.2017.01.053 |
22 | MOHAMAD E T, FARADONBEH R S, ARMAGHANI D J, et al. An optimized ANN model based on genetic algorithm for predicting ripping production [J]. Neural Computing and Applications, 2017, 28(S1): 393-406. 10.1007/s00521-016-2359-8 |
23 | ZAHIR A A M, ALHADY S S N, OTHMAN W, et al. Genetic algorithm optimization of PID controller for brushed DC motor [M]// HASSAN M H A. Intelligent Manufacturing & Mechatronics, LNME. Singapore: Springer, 2018: 427-437. 10.1007/978-981-10-8788-2_38 |
24 | MOUSAKAZEMI S M H, AYOOBIAN N, ANSARIFAR G R. Control of the reactor core power in PWR using optimized PID controller with the real-coded GA [J]. Annals of Nuclear Energy, 2018, 118: 107-121. 10.1016/j.anucene.2018.03.038 |
25 | SAMAKWONG T, ASSAWINCHAICHOTE W. PID controller design for electro-hydraulic servo valve system with genetic algorithm [J]. Procedia Computer Science, 2016, 86: 91-94. 10.1016/j.procs.2016.05.023 |
26 | WANG C C, CHEN F, ZHANG G, et al. Design of genetic algorithm optimized PID controller for gas mixture system [C]// Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement and Instruments. Piscataway: IEEE, 2017: 6-9. 10.1109/icemi.2017.8265695 |
[1] | 刘栋, 李晨航, 吴长茂, 茹法鑫, 夏媛媛. 基于可校正强化搜索遗传算法的光学系统自动设计[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2838-2847. |
[2] | 李炫锋, 刘晟材, 唐珂. 机会约束的多选择背包问题的遗传算法求解[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1378-1385. |
[3] | 高麟, 周宇, 邝得互. 进化双层自适应局部特征选择[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1408-1414. |
[4] | 佘维, 李阳, 钟李红, 孔德锋, 田钊. 基于改进实数编码遗传算法的神经网络超参数优化[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 671-676. |
[5] | 梁军, 洪泽泓, 余松森. 基于改进粒子群优化算法和遗传变异的图像分割模型[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1743-1749. |
[6] | 王彬, 向甜, 吕艺东, 王晓帆. 基于NSGA‑Ⅱ的自适应多尺度特征通道分组优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1401-1408. |
[7] | 张敏, 韩晓龙. 多目标模糊机会约束规划的低碳多式联运路径优化[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 636-644. |
[8] | 薛海蓉, 韩晓龙. 基于改进NSGA-Ⅱ的考虑自动引导车充电策略的集成调度[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3848-3855. |
[9] | 邓辅秦, 黄焕钊, 谭朝恩, 付兰慧, 张建民, 林天麟. 结合遗传算法和滚动调度的多机器人任务分配算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3833-3839. |
[10] | 范厚明, 牟爽, 岳丽君. 考虑冲突和拥堵的自动导引车调度与路径规划协同优化[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2281-2291. |
[11] | 李晓寒, 贾华丁, 程雪, 李太勇. 基于改进遗传算法和图神经网络的股市波动预测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1624-1633. |
[12] | 陈权, 李莉, 陈永乐, 段跃兴. 面向深度学习可解释性的对抗攻击算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 510-518. |
[13] | 刘忠慧, 王梓宥, 闵帆. 近似概念的遗传生成算法及其推荐应用[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 412-418. |
[14] | 张俊杰, 仇润鹤. 认知超密集网络用户关联与资源分配联合优化遗传算法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3856-3862. |
[15] | 高银萍, 苌道方, 陈俊贤. 混堆模式下基于动态规则NSGA Ⅱ的自动堆垛起重机作业优化[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3259-3267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||