《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (10): 3003-3010.DOI: 10.11772/j.issn.1001-9081.2021101792
所属专题: 人工智能
谢斌红, 李书宁, 张英俊
收稿日期:
2021-10-20
修回日期:
2021-12-16
接受日期:
2021-12-23
发布日期:
2022-04-08
出版日期:
2022-10-10
通讯作者:
李书宁
作者简介:
第一联系人:谢斌红(1972—),男,山西万荣人,副教授,硕士,CCF会员,主要研究方向:智能化软件工程、机器学习基金资助:
Binhong XIE, Shuning LI, Yingjun ZHANG
Received:
2021-10-20
Revised:
2021-12-16
Accepted:
2021-12-23
Online:
2022-04-08
Published:
2022-10-10
Contact:
Shuning LI
About author:
XIE Binhong, born in 1972, M. S. , associate professor. His research interests include intelligent software engineering, machine learning.Supported by:
摘要:
针对现有细粒度实体分类(FGET)任务的工作多着眼于如何更好地编码实体和上下文的语义信息,而忽略了标签层次结构中标签之间的依赖关系及其本身的语义信息的问题,提出了一种基于层次结构感知的细粒度实体分类(HAFGET)方法。首先,利用基于图卷积网络(GCN)的层次结构编码器对不同层级标签之间的依赖关系进行建模,提出了基于层次结构感知的细粒度实体分类多标签注意力(HAFGET-MLA)模型和基于层次结构感知的细粒度实体分类实体特征传播(HAFGET-MFP)模型;然后,利用HAFGET-MLA模型和HAFGET-MFP模型对实体上下文特征进行层次结构感知和分类,前者通过层次编码器学习层次结构感知标签嵌入,并与实体特征通过注意力融合后进行标签分类,后者则直接将实体特征输入到层次结构编码器更新特征表示后进行分类。在FIGER、OntoNotes和KNET三个公开数据集上的实验结果表明,与基线模型相比,HAFGET-MLA模型和HAFGET-MFP模型的准确率和宏平均F1值均提升了2%以上,验证了所提方法能够有效提升分类效果。
谢斌红, 李书宁, 张英俊. 基于层次结构感知的细粒度实体分类方法[J]. 计算机应用, 2022, 42(10): 3003-3010.
Binhong XIE, Shuning LI, Yingjun ZHANG. Fine-grained entity typing method based on hierarchy awareness[J]. Journal of Computer Applications, 2022, 42(10): 3003-3010.
数据集 | 训练集样本数 | 验证集样本数 | 测试集样本数 | 实体类型数 | 层级数 | L1 | L2 | L3 |
---|---|---|---|---|---|---|---|---|
FIGER(GOLD) | 2 690 286 | 10 000 | 563 | 113 | 2 | 57 | 56 | — |
KNET(dataset)(WIKI-AUTO) | 981 046 | 99 200 | 99 550 | 74 | 2 | 6 | 68 | — |
KNET(dataset)(WIKI-MAN) | 981 046 | 99 200 | 100 | 74 | 2 | 6 | 68 | — |
OntoNotes | 251 039 | 2 202 | 8 963 | 87 | 3 | 4 | 43 | 40 |
表1 数据集统计信息
Tab. 1 Dataset statistics
数据集 | 训练集样本数 | 验证集样本数 | 测试集样本数 | 实体类型数 | 层级数 | L1 | L2 | L3 |
---|---|---|---|---|---|---|---|---|
FIGER(GOLD) | 2 690 286 | 10 000 | 563 | 113 | 2 | 57 | 56 | — |
KNET(dataset)(WIKI-AUTO) | 981 046 | 99 200 | 99 550 | 74 | 2 | 6 | 68 | — |
KNET(dataset)(WIKI-MAN) | 981 046 | 99 200 | 100 | 74 | 2 | 6 | 68 | — |
OntoNotes | 251 039 | 2 202 | 8 963 | 87 | 3 | 4 | 43 | 40 |
参数名 | 值 | 说明 |
---|---|---|
word embedding | 1 024 | 词向量维度 |
label dimension | 300 | 标签向量维度 |
batch_size | 200 | 批次大小 |
max_len | 128 | 最大句子长度 |
epoch | 20 | 训练批次 |
kernel_size | 2,3,4 | 卷积核大小 |
learning_rate | 0.000 1 | 学习率 |
dropout | 0.2 | 损失率 |
表2 参数设置
Tab. 2 Parameters setting
参数名 | 值 | 说明 |
---|---|---|
word embedding | 1 024 | 词向量维度 |
label dimension | 300 | 标签向量维度 |
batch_size | 200 | 批次大小 |
max_len | 128 | 最大句子长度 |
epoch | 20 | 训练批次 |
kernel_size | 2,3,4 | 卷积核大小 |
learning_rate | 0.000 1 | 学习率 |
dropout | 0.2 | 损失率 |
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 42.8 | 72.4 | 74.9 |
MA[ | 41.6 | 72.7 | 75.7 |
KA[ | 45.5 | 73.6 | 76.2 |
KAD[ | 47.2 | 74.9 | 77.9 |
文献[ | 45.8 | 77.4 | 78.4 |
HAFGET-MLA | 48.7 | 80.1 | 79.4 |
HAFGET-MFP | 48.2 | 80.6 | 79.5 |
表3 WIKI-AUTO数据集上的实验结果 (%)
Tab. 3 Experimental results on WIKI-AUTO dataset
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 42.8 | 72.4 | 74.9 |
MA[ | 41.6 | 72.7 | 75.7 |
KA[ | 45.5 | 73.6 | 76.2 |
KAD[ | 47.2 | 74.9 | 77.9 |
文献[ | 45.8 | 77.4 | 78.4 |
HAFGET-MLA | 48.7 | 80.1 | 79.4 |
HAFGET-MFP | 48.2 | 80.6 | 79.5 |
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 18.0 | 69.4 | 70.1 |
MA[ | 26.0 | 71.2 | 72.1 |
KA[ | 23.0 | 71.1 | 71.7 |
KAD[ | 34.0 | 74.9 | 75.3 |
文献[ | 29.0 | 77.6 | 75.3 |
HAFGET-MLA | 31.1 | 80.1 | 79.1 |
HAFGET-MFP | 30.9 | 80.2 | 78.5 |
表4 WIKI-MAN数据集上的实验结果 (%)
Tab. 4 Experimental results on WIKI-MAN dataset
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 18.0 | 69.4 | 70.1 |
MA[ | 26.0 | 71.2 | 72.1 |
KA[ | 23.0 | 71.1 | 71.7 |
KAD[ | 34.0 | 74.9 | 75.3 |
文献[ | 29.0 | 77.6 | 75.3 |
HAFGET-MLA | 31.1 | 80.1 | 79.1 |
HAFGET-MFP | 30.9 | 80.2 | 78.5 |
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 51.7 | 70.9 | 64.9 |
文献[ | 55.1 | 71.1 | 64.7 |
文献[ | 52.2 | 68.5 | 63.3 |
文献[ | 53.2 | 72.1 | 66.5 |
文献[ | 63.8 | 82.9 | 77.3 |
文献[ | 58.3 | 72.4 | 67.2 |
文献[ | 58.7 | 73.0 | 68.1 |
HAFGET-MLA | 62.1 | 81.3 | 76.2 |
HAFGET-MFP | 59.4 | 78.5 | 73.4 |
表5 OntoNotes数据集上的实验结果 (%)
Tab. 5 Experimental results on OntoNotes dataset
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 51.7 | 70.9 | 64.9 |
文献[ | 55.1 | 71.1 | 64.7 |
文献[ | 52.2 | 68.5 | 63.3 |
文献[ | 53.2 | 72.1 | 66.5 |
文献[ | 63.8 | 82.9 | 77.3 |
文献[ | 58.3 | 72.4 | 67.2 |
文献[ | 58.7 | 73.0 | 68.1 |
HAFGET-MLA | 62.1 | 81.3 | 76.2 |
HAFGET-MFP | 59.4 | 78.5 | 73.4 |
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 51.7 | 70.9 | 64.9 |
文献[ | 53.3 | 69.3 | 66.4 |
文献[ | 59.0 | 78.0 | 74.9 |
文献[ | 60.2 | 78.7 | 75.5 |
文献[ | 62.9 | 83.0 | 79.8 |
文献[ | 69.1 | 82.6 | 80.8 |
文献[ | 65.5 | 80.5 | 78.1 |
HAFGET-MLA | 66.9 | 86.2 | 82.2 |
HAFGET-MFP | 66.3 | 85.7 | 81.0 |
表6 FIGER数据集上的实验结果 (%)
Tab. 6 Experimental results on FIGER dataset
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
文献[ | 51.7 | 70.9 | 64.9 |
文献[ | 53.3 | 69.3 | 66.4 |
文献[ | 59.0 | 78.0 | 74.9 |
文献[ | 60.2 | 78.7 | 75.5 |
文献[ | 62.9 | 83.0 | 79.8 |
文献[ | 69.1 | 82.6 | 80.8 |
文献[ | 65.5 | 80.5 | 78.1 |
HAFGET-MLA | 66.9 | 86.2 | 82.2 |
HAFGET-MFP | 66.3 | 85.7 | 81.0 |
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
baseline | 45.80 | 77.40 | 78.40 |
+基于层次结构感知的GCN | 46.44 | 78.90 | 78.17 |
+先验概率 | 47.19 | 79.31 | 78.59 |
+基于层次结构感知的注意力 | 48.70 | 80.02 | 79.35 |
表7 在WIKI-AUTO数据集上的消融实验结果 (%)
Tab. 7 Ablation experimental results on WIKI-AUTO dataset
模型 | 准确率 | 宏平均F1值 | 微平均F1值 |
---|---|---|---|
baseline | 45.80 | 77.40 | 78.40 |
+基于层次结构感知的GCN | 46.44 | 78.90 | 78.17 |
+先验概率 | 47.19 | 79.31 | 78.59 |
+基于层次结构感知的注意力 | 48.70 | 80.02 | 79.35 |
编号 | 句子 | 标签 |
---|---|---|
S1 | 0.4% from the previous month,the Bank of Japan announced Friday. | "/location""/location/country" |
S2 | Xinhua News Agency, Jinan, January 18th, by reporter Xueqing Dong. | "/location""/location/city" |
S3 | Japan's wholesale prices in September rose 3.3% from a year earlier. | "/other" |
S4 | With a total project investment of nearly 2.3 billion US dollars and over 1 billion US dollars of contracted foreign. | "/other""/other/currency" |
S5 | Strikes and mismanagement were cited, and Premier Ryzhkov warned of "tough measures" . | "/person""/person/political_figure" |
S6 | Since Qingdao Beer and Shandong Huaneng succeeded in respectively issuing H-shares and N-shares. | "/organization""/organization/company" |
表8 句子及所对应的标签
Tab. 8 Sentences and corresponding labels
编号 | 句子 | 标签 |
---|---|---|
S1 | 0.4% from the previous month,the Bank of Japan announced Friday. | "/location""/location/country" |
S2 | Xinhua News Agency, Jinan, January 18th, by reporter Xueqing Dong. | "/location""/location/city" |
S3 | Japan's wholesale prices in September rose 3.3% from a year earlier. | "/other" |
S4 | With a total project investment of nearly 2.3 billion US dollars and over 1 billion US dollars of contracted foreign. | "/other""/other/currency" |
S5 | Strikes and mismanagement were cited, and Premier Ryzhkov warned of "tough measures" . | "/person""/person/political_figure" |
S6 | Since Qingdao Beer and Shandong Huaneng succeeded in respectively issuing H-shares and N-shares. | "/organization""/organization/company" |
1 | 薛露,宋威. 基于动态标签的关系抽取方法[J]. 计算机应用, 2020, 40(6): 1601-1606. 10.11772/j.issn.1001-9081.2019111959 |
XUE L, SONG W. Relation extraction method based on dynamic label[J]. Journal of Computer Applications, 2020, 40(6): 1601-1606. 10.11772/j.issn.1001-9081.2019111959 | |
2 | HOU F, WANG R L, HE J, et al. Improving entity linking through semantic reinforced entity embeddings[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 6843-6848. 10.18653/v1/2020.acl-main.612 |
3 | HE C H, TAN Z, GE B, et al. Complex question decomposition method: Based on fine-grained named entity recognition and domain Knowledge[C]// Proceedings of the 2020 IEEE International Conference on Progress in Informatics and Computing. Piscataway: IEEE, 2020: 263-267. 10.1109/pic50277.2020.9350825 |
4 | REN X, HE W Q, QU M, et al. AFET: automatic fine-grained entity typing by hierarchical partial-label embedding[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016: 1369-1378. 10.18653/v1/d16-1144 |
5 | PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1532-1543. 10.3115/v1/d14-1162 |
6 | WANG C H, CHO K, KIELA D. Code-switched named entity recognition with embedding attention[C]// Proceedings of the 3rd Workshop on Computational Approaches to Linguistic Code-Switching. Stroudsburg, PA: Association for Computational Linguistics, 2018:154-158. 10.18653/v1/w18-3221 |
7 | PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 2227-2237. 10.18653/v1/n18-1202 |
8 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. 10.18653/v1/n18-2 |
9 | LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. 10.1109/tkde.2020.2981314 |
10 | XU P, BARBOSA D. Neural fine-grained entity type classification with hierarchy aware loss[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 16-25. 10.18653/v1/n18-1002 |
11 | LIN Y, JI H. An attentive fine-grained entity typing model with latent type representation[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 6197-6202. 10.18653/v1/d19-1641 |
12 | CHEN T F, CHEN Y M, van DURME B. Hierarchical entity typing via multi-level learning to rank[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 8465-8475. 10.18653/v1/2020.acl-main.749 |
13 | ZHANG S, DUH K, VAN D B. Fine-grained entity typing through increased discourse context and adaptive classification thresholds[C]// Proceedings of the 7th Joint Conference on Lexical and Computational Semantics. Stroudsburg, PA: Association for Computational Linguistics, 2018:173-179. 10.18653/v1/s18-2022 |
14 | LUONG T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2015: 1412-1421. 10.18653/v1/d15-1166 |
15 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-08-20].. 10.48550/arXiv.1609.02907 |
16 | YOU R H, ZHANG Z H, WANG Z Y, et al. AttentionXML: label tree-based attention-aware deep model for high-performance extreme multi-label text classification[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-08-20].. |
17 | DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2224-2232. |
18 | XIN J, LIN Y K, LIU Z Y, et al. Improving neural fine-grained entity typing with knowledge attention[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 5997-6004. 10.1609/aaai.v32i1.12038 |
19 | LING X, WELD D S. Fine-grained entity recognition[C]// Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2012: 94-100. |
20 | GILLICK D, LAZIC N, GANCHEV K, et al. Context-dependent fine-grained entity type tagging[EB/OL]. (2016-08-01) [2021-08-12].. |
21 | SHIMAOKA S, STENETORP P, INUI K, et al. An attentive neural architecture for fine-grained entity type classification[C]// Proceedings of the 5th Workshop on Automated Knowledge Base Construction. Stroudsburg, PA: Association for Computational Linguistics, 2016: 69-74. 10.18653/v1/w16-1313 |
22 | ABHISHEK A, ANAND A, AWEKAR A. Fine-grained entity type classification by jointly learning representations and label embeddings[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, (Volume 1), Long Papers. Stroudsburg, PA: Association for Computational Linguistics, 2017: 797-807. 10.18653/v1/e17-1075 |
[1] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[2] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. |
[3] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[4] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[5] | 庞川林, 唐睿, 张睿智, 刘川, 刘佳, 岳士博. D2D通信系统中基于图卷积网络的分布式功率控制算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2855-2862. |
[6] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[7] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[8] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[9] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[10] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[11] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[12] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[13] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[14] | 毛典辉, 李学博, 刘峻岭, 张登辉, 颜文婧. 基于并行异构图和序列注意力机制的中文实体关系抽取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2018-2025. |
[15] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||