| 1 | CHOI K, YI J, PARK C, et al. Deep learning for anomaly detection in time-series data: review, analysis, and guidelines[J]. IEEE Access, 2021, 9: 120043-120065.  10.1109/ACCESS.2021.3107975 | 
																													
																						| 2 | YANG J F, SUN Y, LIANG J, et al. Image captioning by incorporating affective concepts learned from both visual and textual components[J]. Neurocomputing, 2019, 328: 56-68.  10.1016/j.neucom.2018.03.078 | 
																													
																						| 3 | LI X X, KANG Y F, LI F. Forecasting with time series imaging[J]. Expert Systems with Applications, 2020, 160: No.113680.  10.1016/j.eswa.2020.113680 | 
																													
																						| 4 | LI D, CHEN D C, JIN B H, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]// Proceedings of the 2019 International Conference on Artificial Neural Networks, LNCS 11730. Cham: Springer, 2019: 703-716. | 
																													
																						| 5 | AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]// Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 3395-3404.  10.1145/3394486.3403392 | 
																													
																						| 6 | FAN C, XIAO F, ZHAO Y, et al. Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data[J]. Applied Energy, 2018, 211: 1123-1135.  10.1016/j.apenergy.2017.12.005 | 
																													
																						| 7 | YAO R, LIU C D, ZHANG L X, et al. Unsupervised anomaly detection using variational auto-encoder based feature extraction[C]// Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE, 2019: 1-7.  10.1109/icphm.2019.8819434 | 
																													
																						| 8 | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// Proceedings of the 2017 International Conference on Information Processing in Medical Imaging, LNCS 10265. Cham: Springer, 2017: 146-157. | 
																													
																						| 9 | DENDORFER P, ELFLEIN S, LEAL-TAIXÉ L. MG-GAN: a multi-generator model preventing out-of-distribution samples in pedestrian trajectory prediction[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13138-13147.  10.1109/iccv48922.2021.01291 | 
																													
																						| 10 | KIEU T, YANG B, JENSEN C S. Outlier detection for multidimensional time series using deep neural networks[C]// Proceedings of the 19th IEEE International Conference on Mobile Data Management. Piscataway: IEEE, 2018: 125-134.  10.1109/mdm.2018.00029 | 
																													
																						| 11 | REN H S, XU B X, WANG Y J, et al. Time-series anomaly detection service at Microsoft[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 3009-3017.  10.1145/3292500.3330680 | 
																													
																						| 12 | COOK A A, MISIRLI G, FAN Z. Anomaly detection for IoT time-series data: a survey[J]. IEEE Internet of Things Journal, 2020, 7(7): 6481-6494.  10.1109/jiot.2019.2958185 | 
																													
																						| 13 | RAMASWAMY S, RASTOGI R, SHIM K, et al. Efficient algorithms for mining outliers from large data sets[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 427-438.  10.1145/335191.335437 | 
																													
																						| 14 | BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93-104.  10.1145/335191.335388 | 
																													
																						| 15 | ZARE MOAYEDI H, MASNADI-SHIRAZI M A. ARIMA model for network traffic prediction and anomaly detection[C]// Proceedings of the 2008 International Symposium on Information Technology. Piscataway: IEEE, 2008: 1-6.  10.1109/itsim.2008.4631947 | 
																													
																						| 16 | HE Q P, QIN S J, WANG J. A new fault diagnosis method using fault directions in Fisher discriminant analysis[J]. AIChE Journal, 2005, 51(2): 555-571.  10.1002/aic.10325 | 
																													
																						| 17 | AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147.  10.1016/j.neucom.2017.04.070 | 
																													
																						| 18 | RINGBERG H, SOULE A, REXFORD J, et al. Sensitivity of PCA for traffic anomaly detection[C]// Proceedings of the 2017 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York: ACM, 2007: 109-120.  10.1145/1254882.1254895 | 
																													
																						| 19 | DAI L, LIN T, LIU C, et al. SDFVAE: static and dynamic factorized VAE for anomaly detection of multivariate CDN KPIs[C]// Proceedings of the 2021 World Wide Web Conference. New York: ACM, 2021: 3076-3086.  10.1145/3442381.3450013 | 
																													
																						| 20 | 霍纬纲,王慧芳. 基于自编码器和隐马尔可夫模型的时间序列异常检测方法[J]. 计算机应用, 2020, 40(5): 1329-1334. | 
																													
																						|  | HUO W G, WANG H F. Time series anomaly detection method based on autoencoder and HMM[J]. Journal of Computer Applications, 2020, 40(5): 1329-1334. | 
																													
																						| 21 | VON SCHLEINITZ J, GRAF M, TRUTSCHNIG W, et al. VASP: an autoencoder-based approach for multivariate anomaly detection and robust time series prediction with application in motorsport[J]. Engineering Applications of Artificial Intelligence, 2021, 104: No.104354.  10.1016/j.engappai.2021.104354 | 
																													
																						| 22 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Cambridge: MIT Press, 2014: 2672-2680. | 
																													
																						| 23 | YOOH J, JARRETT D, M VAN DER SCHAAR. Time-series generative adversarial networks[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-09-21].. | 
																													
																						| 24 | 王静,邹慧敏,曲东东,等. 基于经验模态分解生成对抗网络的金融时间序列预测[J]. 计算机应用与软件, 2020, 37(5): 293-297.  10.3969/j.issn.1000-386x.2020.05.050 | 
																													
																						|  | WANG J, ZOU H M, QU D D, et al. Financial time series prediction based on empirical mode decomposition to generate adversarial networks[J]. Computer Applications and Software, 2020, 37(5): 293-297.  10.3969/j.issn.1000-386x.2020.05.050 | 
																													
																						| 25 | GULRAJANI I, AHEMD F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5769-5779. | 
																													
																						| 26 | SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2828-2837. |