| 1 | AL-FUQAHA A, GUIZANI M, MOHAMMADI M, et al. Internet of Things: a survey on enabling technologies, protocols, and applications[J]. IEEE Communications Surveys and Tutorials, 2015, 17(4): 2347-2376.  10.1109/comst.2015.2444095 | 
																													
																						| 2 | 中国互联网络信息中心. 第48次中国互联网络发展状况统计报告[R]. 北京:中国互联网络信息中心, 2021.  10.1007/978-981-33-6930-6_2 | 
																													
																						|  | China Internet Network Information Center. The 48th statistical report on China’s Internet development[R]. Beijing: CNNIC, 2021.  10.1007/978-981-33-6930-6_2 | 
																													
																						| 3 | MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2322-2358.  10.1109/comst.2017.2745201 | 
																													
																						| 4 | CHEN X, LI W Z, LU S L, et al. Efficient resource allocation for on demand mobile-edge cloud computing[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8769-8780.  10.1109/tvt.2018.2846232 | 
																													
																						| 5 | GUO S T, LIU J D, YANG Y Y, et al. Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing[J]. IEEE Transactions on Mobile Computing, 2019, 18(2): 319-333.  10.1109/tmc.2018.2831230 | 
																													
																						| 6 | ALFAKIH T, HASSAN M M, GUMAEI A, et al. Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA[J]. IEEE Access, 2020, 8: 54074-54084.  10.1109/access.2020.2981434 | 
																													
																						| 7 | SADIKI A, BENTAHAR J, DSSOULI R, et al. Deep reinforcement learning for the computation offloading in MIMO-based edge computing[J]. Ad Hoc Networks, 2023, 141: No.103080.  10.1016/j.adhoc.2022.103080 | 
																													
																						| 8 | LI M S, GAO J, ZHAO L, et al. Deep reinforcement learning for collaborative edge computing in vehicular networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1122-1135.  10.1109/tccn.2020.3003036 | 
																													
																						| 9 | LI D J, XU S Y, LI P Y. Deep reinforcement learning-empowered resource allocation for mobile edge computing in cellular V2X networks[J]. Sensors, 2021, 21(2): No.372.  10.3390/s21020372 | 
																													
																						| 10 | JIANG Z B, XU C Q, GUAN J F, et al. Stochastic analysis of DASH-based video service in high-speed railway networks[J]. IEEE Transactions on Multimedia, 2019, 21(6): 1577-1592.  10.1109/tmm.2018.2881095 | 
																													
																						| 11 | MAO H Z, NETRAVALI R, ALIZADEH M. Neural adaptive video streaming with Pensieve[C]// Proceedings of the 2017 Conference of the ACM Special Interest Group on Data Communication. New York: ACM, 2017: 197-210.  10.1145/3098822.3098843 | 
																													
																						| 12 | 杨思明,单征,丁煜,等. 深度强化学习研究综述[J]. 计算机工程, 2021, 47(12): 19-29. | 
																													
																						|  | YANG S M, SHAN Z, DING Y, et al. Survey of research on deep reinforcement learning[J]. Computer Engineering, 2021, 47(12): 19-29. | 
																													
																						| 13 | van HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 2094-2100.  10.1609/aaai.v30i1.10295 | 
																													
																						| 14 | XIONG X, ZHENG K, LEI L, et al. Resource allocation based on deep reinforcement learning in IoT edge computing[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(6): 1133-1146.  10.1109/jsac.2020.2986615 | 
																													
																						| 15 | 梁俊斌,张海涵,蒋婵,等. 移动边缘计算中基于深度强化学习的任务卸载研究进展[J]. 计算机科学, 2021, 48(7): 316-323.  10.11896/jsjkx.200800095 | 
																													
																						|  | LIANG J B, ZHANG H H, JIANG C, et al. Research progress of task offloading based on deep reinforcement learning in mobile edge computing[J]. Computer Science, 2021, 48(7): 316-323.  10.11896/jsjkx.200800095 | 
																													
																						| 16 | MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[EB/OL]. [2021-12-19]..  10.1038/nature14236 | 
																													
																						| 17 | SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. [2022-01-13].. | 
																													
																						| 18 | QIAN Y C, WANG R, WU J, et al. Reinforcement learning based optimal computing and caching in mobile edge network[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(10):2343-2355.  10.1109/jsac.2020.3000396 | 
																													
																						| 19 | WANG C, GUAN J F, FENG T T, et al. BitLat: bitrate-adaptivity and latency-awareness algorithm for live video streaming[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 2642-2646.  10.1145/3343031.3356069 | 
																													
																						| 20 | HOCHBA D S. Approximation algorithms for NP-hard problems[J]. ACM SIGACT News, 1997, 28(2):40-52.  10.1145/261342.571216 | 
																													
																						| 21 | QIU X Y, LIU L B, CHEN W H, et al. Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8050-8062.  10.1109/tvt.2019.2924015 | 
																													
																						| 22 | CAO T F, XU C Q, DU J P, et al. Reliable and efficient multimedia service optimization for edge computing-based 5G networks: game theoretic approaches[J]. IEEE Transactions on Network and Service Management, 2020, 17(3): 1610-1625.  10.1109/tnsm.2020.2993886 | 
																													
																						| 23 | XU J, CHEN L X, ZHOU P. Joint service caching and task offloading for mobile edge computing in dense networks[C]// Proceedings of the 2018 IEEE Conference on Computer Communications. Piscataway: IEEE, 2018:207-215.  10.1109/infocom.2018.8485977 | 
																													
																						| 24 | ABADI A, AGARWAL A, BARHAM P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems[EB/OL]. [2021-12-20].. | 
																													
																						| 25 | CAO T F, XU C Q, WANG M, et al. Stochastic optimization for green multimedia services in dense 5G networks[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(3): No.79.  10.1145/3328996 |