《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (5): 1557-1564.DOI: 10.11772/j.issn.1001-9081.2022040554
所属专题: 多媒体计算与计算机仿真
刘辉1,2, 张琳玉1,2(), 王复港1,2, 何如瑾1,2
收稿日期:
2022-04-19
修回日期:
2022-06-20
接受日期:
2022-06-22
发布日期:
2022-07-11
出版日期:
2023-05-10
通讯作者:
张琳玉
作者简介:
刘辉(1966—),男,四川仪陇人,高级工程师,硕士,主要研究方向:计算机视觉、通信网络新技术、电信系统业务
Hui LIU1,2, Linyu ZHANG1,2(), Fugang WANG1,2, Rujin HE1,2
Received:
2022-04-19
Revised:
2022-06-20
Accepted:
2022-06-22
Online:
2022-07-11
Published:
2023-05-10
Contact:
Linyu ZHANG
About author:
LIU Hui, born in 1966, M. S., senior engineer. His research interests include computer vision, new technology of communication network, telecommunication system service.摘要:
针对目标检测过程中存在的小目标漏检问题,提出一种基于注意力机制和多尺度上下文信息的改进YOLOv5目标检测算法。首先,在特征提取结构中加入多尺度空洞可分离卷积模块(MDSCM)以提取多尺度特征信息,在增大感受野的同时避免小目标信息的丢失;其次,在主干网络中添加注意力机制,并在通道信息中嵌入位置感知信息,进一步增强算法的特征表达能力;最后,使用Soft-NMS(Soft-Non-Maximum Suppression)代替YOLOv5使用的非极大值抑制(NMS),降低检测算法的漏检率。实验结果表明,改进算法在PASCAL VOC数据集、DOTA航拍数据集和DIOR光学遥感数据集上的检测精度分别达到了82.80%、71.74%和77.11%,相较于YOLOv5,分别提高了3.70、1.49和2.48个百分点;而且它对图像中小目标的检测效果更好。因此,改进的YOLOv5可以更好地应用到小目标检测场景中。
中图分类号:
刘辉, 张琳玉, 王复港, 何如瑾. 基于注意力机制和上下文信息的目标检测算法[J]. 计算机应用, 2023, 43(5): 1557-1564.
Hui LIU, Linyu ZHANG, Fugang WANG, Rujin HE. Object detection algorithm based on attention mechanism and context information[J]. Journal of Computer Applications, 2023, 43(5): 1557-1564.
配置项 | 训练 | 测试 |
---|---|---|
编程语言 | Python | Python |
深度学习框架 | Pytorch1.8.0 | Pytorch1.8.0 |
操作系统 | Windows 10 | Windows 10 |
CPU | Core i9-10980XE | Core i5-11400F |
内存 | 128 GB | 16 GB |
GPU | Nvidia RTX 3080 | Nvidia RTX3060 |
CUDA | 11.1 | 11.1 |
表1 实验环境配置
Tab. 1 Experimental environment configuration
配置项 | 训练 | 测试 |
---|---|---|
编程语言 | Python | Python |
深度学习框架 | Pytorch1.8.0 | Pytorch1.8.0 |
操作系统 | Windows 10 | Windows 10 |
CPU | Core i9-10980XE | Core i5-11400F |
内存 | 128 GB | 16 GB |
GPU | Nvidia RTX 3080 | Nvidia RTX3060 |
CUDA | 11.1 | 11.1 |
算法 | mAP/% | FPS |
---|---|---|
YOLOv5 | 79.10 | 108 |
YOLOv5+MDSCM | 80.00 | 91 |
YOLOv5+CA | 81.10 | 108 |
YOLOv5+GCA | 81.40 | 108 |
YOLOv5+Soft-NMS | 79.60 | 104 |
YOLOv5+MDSCM+GCA | 81.70 | 91 |
YOLOv5+MDSCM+Soft-NMS | 80.90 | 90 |
YOLOv5+GCA+Soft-NMS | 82.00 | 106 |
AC-YOLO | 82.80 | 90 |
表2 PASCAL VOC数据集上的消融实验结果
Tab. 2 Ablation experimental results on PASCAL VOC dataset
算法 | mAP/% | FPS |
---|---|---|
YOLOv5 | 79.10 | 108 |
YOLOv5+MDSCM | 80.00 | 91 |
YOLOv5+CA | 81.10 | 108 |
YOLOv5+GCA | 81.40 | 108 |
YOLOv5+Soft-NMS | 79.60 | 104 |
YOLOv5+MDSCM+GCA | 81.70 | 91 |
YOLOv5+MDSCM+Soft-NMS | 80.90 | 90 |
YOLOv5+GCA+Soft-NMS | 82.00 | 106 |
AC-YOLO | 82.80 | 90 |
网络 | 尺寸大小 | mAP/% | FPS |
---|---|---|---|
Faster RCNN | 640×640 | 73.32 | 5 |
SSD | 640×640 | 77.66 | 54 |
YOLOv3 | 640×640 | 72.34 | 60 |
Tiny-YOLOv3 | 640×640 | 73.28 | 91 |
YOLOv5 | 640×640 | 79.10 | 108 |
AC-YOLO | 640×640 | 82.80 | 90 |
表3 不同网络在PASCAL VOC数据集上的性能比较
Tab. 3 Performance comparison of different networks on PASCAL VOC dataset
网络 | 尺寸大小 | mAP/% | FPS |
---|---|---|---|
Faster RCNN | 640×640 | 73.32 | 5 |
SSD | 640×640 | 77.66 | 54 |
YOLOv3 | 640×640 | 72.34 | 60 |
Tiny-YOLOv3 | 640×640 | 73.28 | 91 |
YOLOv5 | 640×640 | 79.10 | 108 |
AC-YOLO | 640×640 | 82.80 | 90 |
类别 | AP(IoU=0.5) | |||
---|---|---|---|---|
YOLOv3 | SSD | YOLOv5 | 本文算法 | |
Aero | 81.20 | 75.50 | 87.70 | 89.20 |
Bike | 80.30 | 80.20 | 89.30 | 91.00 |
Bird | 74.00 | 72.30 | 74.30 | 80.80 |
Boat | 65.50 | 66.30 | 70.80 | 73.90 |
Bottle | 64.10 | 47.60 | 71.60 | 71.80 |
Bus | 81.50 | 83.00 | 85.50 | 89.60 |
Car | 82.20 | 84.20 | 91.70 | 92.00 |
Cat | 83.10 | 86.10 | 83.20 | 89.70 |
Chair | 61.23 | 54.70 | 61.90 | 67.70 |
Cow | 77.30 | 78.30 | 82.00 | 85.90 |
Table | 75.20 | 73.90 | 73.80 | 77.50 |
Dog | 82.20 | 84.50 | 81.00 | 88.00 |
Horse | 84.69 | 85.30 | 87.90 | 91.40 |
Mbike | 81.29 | 82.60 | 86.60 | 89.10 |
Person | 78.46 | 76.20 | 86.60 | 88.50 |
Plant | 52.18 | 48.60 | 52.40 | 57.80 |
Sheep | 77.52 | 73.90 | 81.70 | 84.70 |
Sofa | 74.41 | 76.00 | 70.80 | 78.20 |
Train | 81.66 | 83.40 | 83.50 | 87.30 |
TV | 71.99 | 74.00 | 79.80 | 82.00 |
表4 PASCAL VOC数据集上不同网络结构在各类别上的精度对比 (%)
Tab. 4 Comparison of precisions under different network structures on each category of PASCAL VOC dataset
类别 | AP(IoU=0.5) | |||
---|---|---|---|---|
YOLOv3 | SSD | YOLOv5 | 本文算法 | |
Aero | 81.20 | 75.50 | 87.70 | 89.20 |
Bike | 80.30 | 80.20 | 89.30 | 91.00 |
Bird | 74.00 | 72.30 | 74.30 | 80.80 |
Boat | 65.50 | 66.30 | 70.80 | 73.90 |
Bottle | 64.10 | 47.60 | 71.60 | 71.80 |
Bus | 81.50 | 83.00 | 85.50 | 89.60 |
Car | 82.20 | 84.20 | 91.70 | 92.00 |
Cat | 83.10 | 86.10 | 83.20 | 89.70 |
Chair | 61.23 | 54.70 | 61.90 | 67.70 |
Cow | 77.30 | 78.30 | 82.00 | 85.90 |
Table | 75.20 | 73.90 | 73.80 | 77.50 |
Dog | 82.20 | 84.50 | 81.00 | 88.00 |
Horse | 84.69 | 85.30 | 87.90 | 91.40 |
Mbike | 81.29 | 82.60 | 86.60 | 89.10 |
Person | 78.46 | 76.20 | 86.60 | 88.50 |
Plant | 52.18 | 48.60 | 52.40 | 57.80 |
Sheep | 77.52 | 73.90 | 81.70 | 84.70 |
Sofa | 74.41 | 76.00 | 70.80 | 78.20 |
Train | 81.66 | 83.40 | 83.50 | 87.30 |
TV | 71.99 | 74.00 | 79.80 | 82.00 |
类别 | AP(IoU=0.5) | |||
---|---|---|---|---|
YOLOv3 | SSD | YOLOv5 | 本文算法 | |
mAP | 67.97 | 41.98 | 70.25 | 71.74 |
Small- vehicle | 66.80 | 10.05 | 66.30 | 67.80 |
Large-vehicle | 81.70 | 50.20 | 83.60 | 85.90 |
Plane | 86.20 | 64.70 | 90.80 | 91.80 |
Storage-tank | 69.90 | 57.90 | 69.70 | 74.90 |
Ship | 84.30 | 31.30 | 86.80 | 88.10 |
Harbor | 80.50 | 80.50 | 84.00 | 82.20 |
Ground track-field | 56.70 | 24.90 | 61.90 | 59.30 |
Soccer ball field | 51.70 | 22.70 | 52.50 | 55.60 |
Tennis-court | 89.40 | 85.50 | 94.00 | 93.40 |
Swimming pool | 60.30 | 18.50 | 62.90 | 64.10 |
Baseball diamond | 73.60 | 38.20 | 76.90 | 74.00 |
Roundabout | 50.30 | 44.50 | 58.00 | 59.40 |
Basketball court | 60.40 | 62.50 | 64.40 | 66.20 |
Bridge | 46,10 | 26.20 | 47.80 | 50.40 |
Helicopter | 51.80 | 12.10 | 54.20 | 63.00 |
表5 DOTA数据集上不同网络结构在各类别上的精度对比 ( %)
Tab. 5 Comparison of precisions under different network structures on each category of DOTA dataset
类别 | AP(IoU=0.5) | |||
---|---|---|---|---|
YOLOv3 | SSD | YOLOv5 | 本文算法 | |
mAP | 67.97 | 41.98 | 70.25 | 71.74 |
Small- vehicle | 66.80 | 10.05 | 66.30 | 67.80 |
Large-vehicle | 81.70 | 50.20 | 83.60 | 85.90 |
Plane | 86.20 | 64.70 | 90.80 | 91.80 |
Storage-tank | 69.90 | 57.90 | 69.70 | 74.90 |
Ship | 84.30 | 31.30 | 86.80 | 88.10 |
Harbor | 80.50 | 80.50 | 84.00 | 82.20 |
Ground track-field | 56.70 | 24.90 | 61.90 | 59.30 |
Soccer ball field | 51.70 | 22.70 | 52.50 | 55.60 |
Tennis-court | 89.40 | 85.50 | 94.00 | 93.40 |
Swimming pool | 60.30 | 18.50 | 62.90 | 64.10 |
Baseball diamond | 73.60 | 38.20 | 76.90 | 74.00 |
Roundabout | 50.30 | 44.50 | 58.00 | 59.40 |
Basketball court | 60.40 | 62.50 | 64.40 | 66.20 |
Bridge | 46,10 | 26.20 | 47.80 | 50.40 |
Helicopter | 51.80 | 12.10 | 54.20 | 63.00 |
类别 | AP(IoU=0.5) | |||
---|---|---|---|---|
YOLOv3 | SSD | YOLOv5 | 本文算法 | |
mAP | 58.63 | 51.58 | 74.63 | 77.11 |
Airplane | 59.60 | 49.40 | 89.10 | 93.10 |
Airport | 72.70 | 63.10 | 78.10 | 80.90 |
Baseball field | 73.40 | 66.60 | 81.90 | 79.90 |
Basketball court | 75.70 | 71.10 | 80.00 | 84.40 |
Bridge | 29.70 | 26.50 | 69.20 | 76.00 |
Chimney | 65.60 | 63.30 | 89.70 | 81.70 |
Dam | 56.60 | 54.30 | 73.10 | 77.10 |
Expressway service area | 63.50 | 62.70 | 70.50 | 67.60 |
Expressway toll station | 53.10 | 46.60 | 58.50 | 70.00 |
Golf course | 65.30 | 64.40 | 70.30 | 66.70 |
Ground track field | 68.60 | 53.10 | 66.20 | 75.70 |
Harbor | 49.40 | 44.20 | 69.30 | 75.50 |
Overpass | 48.10 | 35.70 | 78.80 | 76.70 |
Ship | 59.20 | 58.30 | 80.30 | 87.00 |
Stadium | 61.00 | 41.10 | 60.90 | 65.80 |
Storage tank | 46.60 | 72.60 | 70.40 | 70.10 |
Tennis court | 76.30 | 37.50 | 85.20 | 88.70 |
Train station | 55.10 | 22.70 | 66.80 | 63.50 |
Vehicle | 27.40 | 47.10 | 76.70 | 81.20 |
Wind mill | 65.70 | 51.20 | 77.50 | 80.50 |
表6 DIOR数据集上不同网络结构在各类别上的精度对比 (%)
Tab. 6 Comparison of precisionsunder different network structures on each category of DIOR dataset
类别 | AP(IoU=0.5) | |||
---|---|---|---|---|
YOLOv3 | SSD | YOLOv5 | 本文算法 | |
mAP | 58.63 | 51.58 | 74.63 | 77.11 |
Airplane | 59.60 | 49.40 | 89.10 | 93.10 |
Airport | 72.70 | 63.10 | 78.10 | 80.90 |
Baseball field | 73.40 | 66.60 | 81.90 | 79.90 |
Basketball court | 75.70 | 71.10 | 80.00 | 84.40 |
Bridge | 29.70 | 26.50 | 69.20 | 76.00 |
Chimney | 65.60 | 63.30 | 89.70 | 81.70 |
Dam | 56.60 | 54.30 | 73.10 | 77.10 |
Expressway service area | 63.50 | 62.70 | 70.50 | 67.60 |
Expressway toll station | 53.10 | 46.60 | 58.50 | 70.00 |
Golf course | 65.30 | 64.40 | 70.30 | 66.70 |
Ground track field | 68.60 | 53.10 | 66.20 | 75.70 |
Harbor | 49.40 | 44.20 | 69.30 | 75.50 |
Overpass | 48.10 | 35.70 | 78.80 | 76.70 |
Ship | 59.20 | 58.30 | 80.30 | 87.00 |
Stadium | 61.00 | 41.10 | 60.90 | 65.80 |
Storage tank | 46.60 | 72.60 | 70.40 | 70.10 |
Tennis court | 76.30 | 37.50 | 85.20 | 88.70 |
Train station | 55.10 | 22.70 | 66.80 | 63.50 |
Vehicle | 27.40 | 47.10 | 76.70 | 81.20 |
Wind mill | 65.70 | 51.20 | 77.50 | 80.50 |
1 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceeding of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:580-587. 10.1109/cvpr.2014.81 |
2 | GIRSHICK R. Fast R-CNN[C]// Proceeding of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1440-1448. 10.1109/iccv.2015.169 |
3 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
4 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 |
5 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-04-18].. 10.1109/cvpr.2017.690 |
6 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
7 | ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4203-4212. 10.1109/cvpr.2018.00442 |
8 | LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]// Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186. 10.1109/icaiic51459.2021.9415217 |
9 | 许腾,唐贵进,刘清萍,等. 基于空洞卷积和Focal Loss的改进YOLOv3算法[J]. 南京邮电大学学报(自然科学版), 2020, 40(6):100-108. 10.14132/j.cnki.1673-5439.2020.06.015 |
XU T, TANG G J, LIU Q P, et al. Improved YOLOv3 based on dilated convolution and Focal Loss[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2020, 40(6):100-108. 10.14132/j.cnki.1673-5439.2020.06.015 | |
10 | CAO G M, XIE X M, YANG W Z, et al. Feature-fused SSD: fast detection for small objects[C]// Proceedings of the 9th International Conference on Graphic and Image Processing. Bellingham, WA: SPIE, 2018: No.106151E. 10.1117/12.2304811 |
11 | 董如婵,焦李成,赵进,等. 一种深度融合机制的遥感图像目标检测技术[J]. 西安电子科技大学学报, 2021, 48(5): 128-138. |
DONG R C, JIAO L C, ZHAO J, et al. Application of the deep fusion mechanism in object detection of remote sensing images[J]. Journal of Xidian University, 2021, 48(5):128-138. | |
12 | 马巧梅,王明俊,梁昊然. 复杂场景下基于改进YOLOv3的车牌定位检测算法[J]. 计算机工程与应用, 2021, 57(7):198-208. 10.3778/j.issn.1002-8331.2008-0137 |
MA Q M, WANG M J, LIANG H R. License plate location detection algorithm based on improved YOLOv3 in complex scenes[J]. Computer Engineering and Applications, 2021, 57(7):198-208. 10.3778/j.issn.1002-8331.2008-0137 | |
13 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 |
14 | ZHANG F, JIAO L C, LI L L, et al. Multiresolution attention extractor for small object detection[EB/OL]. (2020-06-10) [2022-04-18].. 10.48550/arXiv.2006.05941 |
15 | Ultralytics. YOLOv5[EB/OL]. [2022-01-18].. 10.1117/1.jei.31.3.033033 |
16 | XU B Q, JIANG G W, LIU J H, et al. Aircraft rotated boxes detection method based on YOLOv5[C]// Proceedings of the 4th International Conference on Pattern Recognition and Artificial Intelligence. Piscataway: IEEE, 2021: 390-394. 10.1109/prai53619.2021.9551072 |
17 | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580. 10.1109/cvprw50498.2020.00203 |
18 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824 |
19 | LIN T Y, DOLLÁR P, GIRSHISICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
20 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 10.1109/cvpr.2018.00913 |
21 | CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13034-13043. 10.1109/cvpr46437.2021.01284 |
22 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05) [2022-04-06].. 10.1007/978-3-030-01234-2_49 |
23 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
24 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
25 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722. 10.1109/cvpr46437.2021.01350 |
26 | JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018: 816-832. |
27 | NING C C, ZHOU H J, SONG Y, et al. Inception single shot multiBox detector for object detection[C]// Proceedings of the 2017 IEEE International Conference on Multimedia and Expo Workshops. Piscataway: IEEE, 2017: 549-554. 10.1109/icmew.2017.8026312 |
28 | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS - improving object detection with one line of code[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5562-5570. 10.1109/iccv.2017.593 |
29 | WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460. 10.1109/wacv.2018.00163 |
30 | EVERINGHAM M, ESLAMI S M A, van GOOL L, et al. The PASCAL Visual Object Classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136. 10.1007/s11263-014-0733-5 |
31 | XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3974-3983. 10.1109/cvpr.2018.00418 |
32 | LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. 10.1016/j.isprsjprs.2019.11.023 |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[3] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[4] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[5] | 张英俊, 李牛牛, 谢斌红, 张睿, 陆望东. 课程学习指导下的半监督目标检测框架[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2326-2333. |
[6] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[7] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[8] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[9] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[10] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[11] | 李烨恒, 罗光圣, 苏前敏. 基于改进YOLOv5的Logo检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2580-2587. |
[12] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[13] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[14] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[15] | 魏文亮, 王阳萍, 岳彪, 王安政, 张哲. 基于光照权重分配和注意力的红外与可见光图像融合深度学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2183-2191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||