1 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 International Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2016: 779-788.
|
2 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
3 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
4 |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
|
5 |
LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
|
6 |
ROSENBERG C, HEBERT M, SCHNEIDERMAN H. Semi-supervised self-training of object detection models[C]// Proceedings of the 2005 7th IEEE Workshops on Applications of Computer Vision. Piscataway: IEEE, 2005: 29-36.
|
7 |
ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8.
|
8 |
JEONG J, LEE S, KIM J, et al. Consistency-based semi-supervised learning for object detection[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 10759-10768.
|
9 |
JEONG J, VERMA V, HYUN M, et al. Interpolation-based semi-supervised learning for object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11597-11606.
|
10 |
SOHN K, ZHANG Z, LI C-L, et al. A simple semi-supervised learning framework for object detection[EB/OL]. (2020-05-10)[2023-08-01]. .
|
11 |
ZHOU Q, YU C, WANG Z, et al. Instant-Teaching: an end-to-end semi-supervised object detection framework[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4079-4088.
|
12 |
LIU Y-C, MA C-Y, KIRA Z. Unbiased teacher for semi-supervised object detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9809-9818.
|
13 |
XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3040-3049.
|
14 |
MA C, PAN X, YE Q, et al. CrossRectify: leveraging disagreement for semi-supervised object detection[J]. Pattern Recognition, 2023, 137: 109280.
|
15 |
REN Z, YEH R A, SCHWING A G. Not all unlabeled data are equal: learning to weight data in semi-supervised learning[C]// Proceedings of the 34th Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21786-21797.
|
16 |
BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 41-48.
|
17 |
TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1195-1204.
|
18 |
戴立伟,黄山.基于课程学习思想的目标检测增强算法[J]. 计算机辅助设计与图形学学报, 2021, 33(2): 278-286.
|
|
DAI L W, HUANG S. Object detection enhancement algorithm based on curriculum learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(2): 278-286.
|
19 |
贾乐瑶,马盈仓,邢志伟.基于自步学习的自适应半监督聚类算法[J]. 西北大学学报(自然科学版),2022, 52(5): 847-856.
|
|
JIA L Y, MA Y C, XING Z W. An adaptive semi-supervised clustering algorithm based on self-paced learning[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(5): 847-856.
|
20 |
古楠楠,孙湘南,刘伟.基于自步学习与稀疏自表达的半监督分类方法[J]. 系统科学与数学,2020,40(1):191-208.
|
|
GU N N, SUN X N, LIU W. Semi-supervised classification method based on self-paced learning and sparse self-expression[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(1): 191-208.
|
21 |
PLATANIOS E A, STRETCU O, NEUBIG G, et al. Competence-based curriculum learning for neural machine translation[EB/OL]. (2019-03-23)[2023-08-01]. .
|
22 |
WANG Z, LI Y, GUO Y, et al. Data-uncertainty guided multi-phase learning for semi-supervised object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4566-4575.
|
23 |
YANG L, ZHUO W, QI L, et al. ST++: make self-training work better for semi-supervised semantic segmentation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4258-4267.
|