《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (7): 2311-2318.DOI: 10.11772/j.issn.1001-9081.2022060924
所属专题: 多媒体计算与计算机仿真
• 多媒体计算与计算机仿真 • 上一篇
收稿日期:
2022-06-24
修回日期:
2022-09-02
接受日期:
2022-09-09
发布日期:
2022-09-23
出版日期:
2023-07-10
通讯作者:
秦源源
作者简介:
秦源源(1998—),女,湖南衡阳人,硕士研究生,主要研究方向:计算机视觉、医学图像处理、机器学习;
Yuanyuan QIN1,2(), Hong ZHANG1,2
Received:
2022-06-24
Revised:
2022-09-02
Accepted:
2022-09-09
Online:
2022-09-23
Published:
2023-07-10
Contact:
Yuanyuan QIN
About author:
QIN Yuanyuan, born in 1998, M. S. candidate. Her research interests include computer vision, medical image processing, machine learning.摘要:
针对肺结节计算机辅助检测(CAD)系统中肺结节形态各异难以检测带来的敏感度低、假阳性率高的问题,提出一种基于注意力特征金字塔网络的肺结节检测算法。在第一阶段,以更加紧凑的双路径网络(DPN)为骨干网络,并结合特征金字塔网络(FPN)进行多尺度预测,以获取不同层次的特征信息,同时嵌入全局注意力机制(GAM)来细化学习要强调的语义特征,并提高算法的敏感度;在第二阶段,提出一种假阳性抑制网络,以获得最终分类预测结果;在训练阶段,采用焦点损失函数和多种数据增强技术来处理数据不平衡问题。在公开数据集LUNA16 (LUng Nodule Analysis 2016)上的实验结果显示:仅有第一阶段的算法的竞争性能指标(CPM)达到了0.908,而加入假阳性抑制网络后算法的CPM达到了0.933,这与经典算法基于最大强度投影(MIP)的卷积神经网络(CNN)算法相比提升了1.1个百分点;而消融实验的结果表明DPN、FPN、GAM对于提升检测敏感度是有作用的。以上证明了所提出的两阶段检测算法可以获取多尺度结节信息,提高肺结节检测的敏感度,并且降低假阳性率。
中图分类号:
秦源源, 张鸿. 基于注意力特征金字塔网络的肺结节检测算法[J]. 计算机应用, 2023, 43(7): 2311-2318.
Yuanyuan QIN, Hong ZHANG. Pulmonary nodule detection algorithm based on attention feature pyramid networks[J]. Journal of Computer Applications, 2023, 43(7): 2311-2318.
算法 | 不同假阳性数下的敏感度 | CPM | ||||||
---|---|---|---|---|---|---|---|---|
0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ||
文献[ | 0.594 | 0.727 | 0.781 | 0.844 | 0.875 | 0.891 | 0.898 | 0.801 |
文献[ | 0.677 | 0.737 | 0.815 | 0.848 | 0.879 | 0.907 | 0.922 | 0.827 |
文献[ | 0.692 | 0.769 | 0.824 | 0.865 | 0.893 | 0.917 | 0.933 | 0.842 |
文献[ | 0.678 | 0.772 | 0.836 | 0.884 | 0.918 | 0.940 | 0.951 | 0.854 |
文献[ | 0.739 | 0.803 | 0.858 | 0.888 | 0.907 | 0.916 | 0.920 | 0.862 |
文献[ | 0.712 | 0.809 | 0.854 | 0.889 | 0.915 | 0.930 | 0.942 | 0.864 |
文献[ | 0.712 | 0.802 | 0.865 | 0.901 | 0.937 | 0.946 | 0.955 | 0.874 |
文献[ | 0.676 | 0.776 | 0.879 | 0.949 | 0.958 | 0.958 | 0.958 | 0.878 |
文献[ | 0.748 | 0.853 | 0.887 | 0.922 | 0.938 | 0.944 | 0.946 | 0.891 |
文献[ | 0.788 | 0.876 | 0.916 | 0.921 | 0.928 | 0.936 | 0.944 | 0.901 |
文献[ | 0.876 | 0.899 | 0.912 | 0.927 | 0.942 | 0.948 | 0.953 | 0.922 |
DPAFPN(本文算法) | 0.827 | 0.878 | 0.903 | 0.914 | 0.936 | 0.947 | 0.951 | 0.908 |
DPAFPN+FPR(本文算法) | 0.846 | 0.911 | 0.924 | 0.952 | 0.963 | 0.968 | 0.968 | 0.933 |
表1 不同算法肺结节检测性能比较
Tab. 1 Comparison of pulmonary nodules detection performance of different algorithms
算法 | 不同假阳性数下的敏感度 | CPM | ||||||
---|---|---|---|---|---|---|---|---|
0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ||
文献[ | 0.594 | 0.727 | 0.781 | 0.844 | 0.875 | 0.891 | 0.898 | 0.801 |
文献[ | 0.677 | 0.737 | 0.815 | 0.848 | 0.879 | 0.907 | 0.922 | 0.827 |
文献[ | 0.692 | 0.769 | 0.824 | 0.865 | 0.893 | 0.917 | 0.933 | 0.842 |
文献[ | 0.678 | 0.772 | 0.836 | 0.884 | 0.918 | 0.940 | 0.951 | 0.854 |
文献[ | 0.739 | 0.803 | 0.858 | 0.888 | 0.907 | 0.916 | 0.920 | 0.862 |
文献[ | 0.712 | 0.809 | 0.854 | 0.889 | 0.915 | 0.930 | 0.942 | 0.864 |
文献[ | 0.712 | 0.802 | 0.865 | 0.901 | 0.937 | 0.946 | 0.955 | 0.874 |
文献[ | 0.676 | 0.776 | 0.879 | 0.949 | 0.958 | 0.958 | 0.958 | 0.878 |
文献[ | 0.748 | 0.853 | 0.887 | 0.922 | 0.938 | 0.944 | 0.946 | 0.891 |
文献[ | 0.788 | 0.876 | 0.916 | 0.921 | 0.928 | 0.936 | 0.944 | 0.901 |
文献[ | 0.876 | 0.899 | 0.912 | 0.927 | 0.942 | 0.948 | 0.953 | 0.922 |
DPAFPN(本文算法) | 0.827 | 0.878 | 0.903 | 0.914 | 0.936 | 0.947 | 0.951 | 0.908 |
DPAFPN+FPR(本文算法) | 0.846 | 0.911 | 0.924 | 0.952 | 0.963 | 0.968 | 0.968 | 0.933 |
算法 | 结节检出率/% | 敏感度 | ||
---|---|---|---|---|
3~5 mm | 5~10 mm | >10 mm | ||
DPAFPN | 95.6 | 96.4 | 95.7 | 0.960 |
DPAFPN+FPR | 97.0 | 97.1 | 98.2 | 0.974 |
表2 不同尺寸结节的检测结果
Tab. 2 Detection results of nodules with different sizes
算法 | 结节检出率/% | 敏感度 | ||
---|---|---|---|---|
3~5 mm | 5~10 mm | >10 mm | ||
DPAFPN | 95.6 | 96.4 | 95.7 | 0.960 |
DPAFPN+FPR | 97.0 | 97.1 | 98.2 | 0.974 |
敏感度 | ||
---|---|---|
1 | 0.20 | 0.961 |
0.25 | 0.972 | |
0.30 | 0.960 | |
2 | 0.20 | 0.970 |
0.25 | 0.974 | |
0.30 | 0.968 |
表3 损失函数的参数对比
Tab. 3 Comparison of parameters of loss functions
敏感度 | ||
---|---|---|
1 | 0.20 | 0.961 |
0.25 | 0.972 | |
0.30 | 0.960 | |
2 | 0.20 | 0.970 |
0.25 | 0.974 | |
0.30 | 0.968 |
算法 | 平均扫描假阳性数(最佳性能) | 最高敏感度 |
---|---|---|
D_FPN | 27 | 0.932 |
D_FPN+SA | 29 | 0.954 |
D_FPN+CA | 35 | 0.961 |
DPAFPN | 33 | 0.967 |
DPAFPN+FPR | 28 | 0.974 |
表4 GAM子模块验证
Tab. 4 GAM submodule verification
算法 | 平均扫描假阳性数(最佳性能) | 最高敏感度 |
---|---|---|
D_FPN | 27 | 0.932 |
D_FPN+SA | 29 | 0.954 |
D_FPN+CA | 35 | 0.961 |
DPAFPN | 33 | 0.967 |
DPAFPN+FPR | 28 | 0.974 |
1 | 董林佳,强彦,赵涓涓,等.基于三维形状指数的肺结节自动检测方法[J].计算机应用, 2017, 37(11): 3182-3187. |
DONG L J, QIANG Y, ZHAO J J, et al. Automatic detection of pulmonary nodules based on 3D shape index[J]. Journal of Computer Applications, 2017, 37(11): 3182-3187. | |
2 | OKUMURA T, MIWA T, KAKO J I, et al. Automatic detection of lung cancers in chest CT images by variable N-Quoit filter [C]// Proceedings of the 14th International Conference on Pattern Recognition — Volume 2. Piscataway: IEEE, 1998: 1671-1673. |
3 | WU S Y, WANG J F. Pulmonary nodules 3D detection on serial CT scans [C]// Proceedings of the 3rd Global Congress on Intelligent Systems. Piscataway: IEEE, 2012: 257-260. 10.1109/gcis.2012.46 |
4 | LASSEN B C, JACOBS C, KUHNIGK J M, et al. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans[J]. Physics in Medicine and Biology, 2015, 60(3): No.1307. 10.1088/0031-9155/60/3/1307 |
5 | 高智勇,黄金镇,杜程刚.基于特征金字塔网络的肺结节检测[J].计算机应用, 2020, 40(9): 2571-2576. |
GAO Z Y, HUANG J Z, DU C G. Pulmonary nodule detection based on feature pyramid networks[J]. Journal of Computer Applications, 2020, 40(9): 2571-2576. | |
6 | XIE H T, YANG D B, SUN N N, et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks[J]. Pattern Recognition, 2019, 85: 109-119. 10.1016/j.patcog.2018.07.031 |
7 | 戚永军,顾军华,张亚娟,等.基于深度混合卷积模型的肺结节检测方法[J].计算机应用, 2020, 40(10): 2904-2909. |
QI Y J, GU J H, ZHANG Y J, et al. Deep mixed convolution model for pulmonary nodule detection[J]. Journal of Computer Applications, 2020, 40(10): 2904-2909. | |
8 | ZHENG S Y, GUO J P, CUI X N, et al. Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection[J]. IEEE Transactions on Medical Imaging, 2020, 39(3): 797-805. 10.1109/tmi.2019.2935553 |
9 | ZHU W T, LIU C C, FAN W, et al. DeepLung: deep 3D dual path nets for automated pulmonary nodule detection and classification [C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 673-681. 10.1109/wacv.2018.00079 |
10 | LI J Q, WANG K, YANG D, et al. Deepnodule: multi-task learning of segmentation bootstrap for pulmonary nodule detection [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 1215-1219. 10.1109/icassp39728.2021.9413825 |
11 | LI Y M, FAN Y. DeepSEED: 3D squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection [C]// Proceedings of the IEEE 17th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2020: 1866-1869. 10.1109/isbi45749.2020.9098317 |
12 | LIU J N, LI J, XUE F Y, et al. Dense attention module for accurate pulmonary nodule detection [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 1220-1224. 10.1109/icassp39728.2021.9413936 |
13 | 袁金丽,赵琳琳,郭志涛,等.改进U型残差网络用于肺结节检测[J].计算机工程与应用, 2022, 58(13): 195-203. 10.3778/j.issn.1002-8331.2011-0211 |
YUAN J L, ZHAO L L, GUO Z T, et al. Improved U-shaped residual network for lung nodule detection[J]. Computer Engineering and Applications, 2022, 58(13): 195-203. 10.3778/j.issn.1002-8331.2011-0211 | |
14 | 许正玺,张少敏,支力佳,等.三维多尺度嵌套U结构CT影像肺结节检测[J].中国图象图形学报, 2022, 27(3): 797-811. 10.11834/jig.210422 |
XU Z X, ZHANG S M, ZHI L J, et al. Detection of pulmonary nodules in three-dimensional multiscal nested U-structure computed tomography images[J]. Journal of Image and Graphics, 2022, 27(3): 797-811. 10.11834/jig.210422 | |
15 | 张福玲,张少敏,支力佳,等.融合注意力机制和特征金字塔网络的CT图像肺结节检测[J].中国图象图形学报, 2021, 26(9): 2156-2170. 10.11834/jig.210160 |
ZHANG F L, ZHANG S M, ZHI L J, et al. Detection of pulmonary nodules in CT images by combining an attention mechanism and a feature pyramid network[J]. Journal of Image and Graphics, 2021, 26(9): 2156-2170. 10.11834/jig.210160 | |
16 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
17 | CHEN Y P, LI J N, XIAO H X, et al. Dual path networks [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4470-4478. |
18 | LIAO F Z, LIANG M, LI Z, et al. Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3484-3495. 10.1109/tnnls.2019.2892409 |
19 | DOU Q, CHEN H, JIN Y M, et al. Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning [C]// Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham: Springer, 2017: 630-638. |
20 | MEI J, CHENG M M, XU G, et al. SANet: a slice-aware network for pulmonary nodule detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4374-4387. |
21 | WANG B, QI G J, TANG S, et al. Automated pulmonary nodule detection: high sensitivity with few candidates [C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11071. Cham: Springer, 2018: 759-767. |
22 | DING J, LI A X, HU Z Q, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks [C]// Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham: Springer, 2017: 559-567. |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[3] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[4] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[5] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[6] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[7] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[8] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[9] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[10] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[11] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[12] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[13] | 高阳峄, 雷涛, 杜晓刚, 李岁永, 王营博, 闵重丹. 基于像素距离图和四维动态卷积网络的密集人群计数与定位方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2233-2242. |
[14] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[15] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||