《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (6): 1750-1758.DOI: 10.11772/j.issn.1001-9081.2022060952
所属专题: CCF第37届中国计算机应用大会 (CCF NCCA 2022)
• CCF第37届中国计算机应用大会 (CCF NCCA 2022) • 上一篇 下一篇
收稿日期:
2022-06-30
修回日期:
2022-10-24
接受日期:
2022-10-26
发布日期:
2022-11-16
出版日期:
2023-06-10
通讯作者:
王辉
作者简介:
王辉(1983—),男,河北石家庄人,副教授,博士,CCF会员,主要研究方向:计算机图形学、人工智能Email:wangh@stdu.edu.cn基金资助:
Received:
2022-06-30
Revised:
2022-10-24
Accepted:
2022-10-26
Online:
2022-11-16
Published:
2023-06-10
Contact:
Hui WANG
About author:
LI Jianhong, born in 1995, M. S. Her research interests include computer graphics, artificial intelligence.
Supported by:
摘要:
针对三维模型的分类问题,提出一种基于Transformer的三维(3D)模型小样本识别方法。首先,将支持和查询样本的3D点云模型输入特征提取模块中,以得到特征向量;然后,在Transformer模块中计算支持样本的注意力特征;最后,利用余弦相似性网络,计算查询与支持样本的关系分数。在ModelNet 40数据集上,相较于两层长短期记忆(Dual-LSTM)方法,所提方法的5-way 1-shot和5-way 5-shot的识别准确率分别提高了34.54和21.00个百分点;同时,所提方法在ShapeNet Core数据集上也取得了较高的准确率。实验结果表明,所提方法能够更准确地识别全新的3D模型类别。
中图分类号:
王辉, 李建红. 基于Transformer的三维模型小样本识别方法[J]. 计算机应用, 2023, 43(6): 1750-1758.
Hui WANG, Jianhong LI. Few-shot recognition method of 3D models based on Transformer[J]. Journal of Computer Applications, 2023, 43(6): 1750-1758.
采样 点数 | ModelNet 40 | ShapeNet Core.v2 | ShapeNet Core_normal | |||
---|---|---|---|---|---|---|
3-way | 5-way | 3-way | 5-way | 3-way | 5-way | |
256 | 83.28 | 78.25 | 80.12 | 79.06 | 85.99 | 80.86 |
512 | 86.59 | 79.06 | 80.28 | 79.63 | 96.05 | 84.39 |
1 024 | 87.37 | 80.86 | 81.75 | 81.51 | 83.96 | 82.25 |
2 048 | 87.21 | 81.32 | 80.63 | 79.96 | 78.68 | 81.01 |
表1 不同采样点数1-shot实验的准确率 ( %)
Tab. 1 Accuracy of 1-shot experiments at different sampling point numbers
采样 点数 | ModelNet 40 | ShapeNet Core.v2 | ShapeNet Core_normal | |||
---|---|---|---|---|---|---|
3-way | 5-way | 3-way | 5-way | 3-way | 5-way | |
256 | 83.28 | 78.25 | 80.12 | 79.06 | 85.99 | 80.86 |
512 | 86.59 | 79.06 | 80.28 | 79.63 | 96.05 | 84.39 |
1 024 | 87.37 | 80.86 | 81.75 | 81.51 | 83.96 | 82.25 |
2 048 | 87.21 | 81.32 | 80.63 | 79.96 | 78.68 | 81.01 |
数据集 | 3-way | 5-way |
---|---|---|
ModelNet 40 | 87.37 | 80.86 |
ShapeNet Core.v2 | 81.75 | 81.51 |
ShapeNet Core_normal | 83.96 | 82.25 |
表2 本文方法在ModelNet 40和ShapeNet Core数据集上1-shot实验的准确率 (%)
Tab. 2 Accuracies of the proposed method of 1-shot experiments on ModelNet 40 and ShapeNet Core datasets
数据集 | 3-way | 5-way |
---|---|---|
ModelNet 40 | 87.37 | 80.86 |
ShapeNet Core.v2 | 81.75 | 81.51 |
ShapeNet Core_normal | 83.96 | 82.25 |
数据集 | K=1 | K=2 | K=5 | K=10 |
---|---|---|---|---|
ModelNet 40 | 80.86 | 81.25 | 83.77 | 84.21 |
ShapeNet Core_normal | 82.25 | 83.96 | 85.31 | 85.76 |
表3 ModelNet 40和ShapeNet Core_normal数据集上5-way K-shot实验的准确率 (%)
Tab. 3 Accuracies of 5-way K-shot experiments on ModelNet 40 and ShapeNet Core_normal datasets
数据集 | K=1 | K=2 | K=5 | K=10 |
---|---|---|---|---|
ModelNet 40 | 80.86 | 81.25 | 83.77 | 84.21 |
ShapeNet Core_normal | 82.25 | 83.96 | 85.31 | 85.76 |
数据集 | |||||
---|---|---|---|---|---|
ShapeNet Core.v2 | 79.33 | 82.32 | 80.57 | 79.18 | 79.62 |
ShapeNet Core_normal | 80.44 | 85.31 | 83.75 | 81.64 | 81.28 |
ModelNet 40 | 78.53 | 83.77 | 81.19 | 80.43 | 80.01 |
表4 不同λ值的识别准确率 ( %)
Tab. 4 Recognition accuracies at different λ values
数据集 | |||||
---|---|---|---|---|---|
ShapeNet Core.v2 | 79.33 | 82.32 | 80.57 | 79.18 | 79.62 |
ShapeNet Core_normal | 80.44 | 85.31 | 83.75 | 81.64 | 81.28 |
ModelNet 40 | 78.53 | 83.77 | 81.19 | 80.43 | 80.01 |
方法 | 5-way | 10-way | ||
---|---|---|---|---|
10-shot | 20-shot | 10-shot | 20-shot | |
DGCNN+cTree[ | 60.00 | 65.70 | 48.50 | 53.00 |
PointNet+cTree[ | 63.20 | 68.90 | 49.20 | 50.10 |
PointNet+Jigsaw[ | 66.50 | 69.20 | 56.90 | 66.50 |
本文方法 | 84.21 | 81.53 | 80.32 | 80.75 |
表5 不同深度学习方法在ModelNet 40数据集上的小样本识别准确率 (%)
Tab. 5 Few-shot recognition accuracies of different deep learning methods on ModelNet 40 dataset
方法 | 5-way | 10-way | ||
---|---|---|---|---|
10-shot | 20-shot | 10-shot | 20-shot | |
DGCNN+cTree[ | 60.00 | 65.70 | 48.50 | 53.00 |
PointNet+cTree[ | 63.20 | 68.90 | 49.20 | 50.10 |
PointNet+Jigsaw[ | 66.50 | 69.20 | 56.90 | 66.50 |
本文方法 | 84.21 | 81.53 | 80.32 | 80.75 |
方法 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Dual-LSTM[ | 46.32 | 62.77 |
关系网络 | 70.27 | 72.13 |
无Transformer网络 | 35.56 | 36.92 |
本文方法 | 80.86 | 83.77 |
表6 不同三维模型小样本识别方法在ModelNet 40数据集上的5-way准确率 ( %)
Tab. 6 Five-way accuracies of different few-shot recognition methods of 3D models on ModelNet 40 dataset
方法 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Dual-LSTM[ | 46.32 | 62.77 |
关系网络 | 70.27 | 72.13 |
无Transformer网络 | 35.56 | 36.92 |
本文方法 | 80.86 | 83.77 |
1 | WANG Y K, XU C M, LIU C, et al. Instance credibility inference for few-shot learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12833-12842. 10.1109/cvpr42600.2020.01285 |
2 | 赵凯琳,靳小龙,王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2): 349-369. 10.13328/j.cnki.jos.006138 |
ZHAO K L, JIN X L, WANG Y Z. Survey on few-shot learning [J]. Journal of Software, 2021, 32(2): 349-369. 10.13328/j.cnki.jos.006138 | |
3 | YANG J C, GUO X L, LI Y, et al. A survey of few-shot learning in smart agriculture: developments, applications, and challenges [J]. Plant Methods, 2022, 18: No.28. 10.1186/s13007-022-00866-2 |
4 | SA L B, YU C C, MA X Q, et al. Attentive fine-grained recognition for cross-domain few-shot classification[J]. Neural Computing and Applications, 2022, 34(6): 4733-4746. 10.1007/s00521-021-06627-x |
5 | 孙文赟,金忠,赵海涛,等. 基于深度特征增广的跨域小样本人脸欺诈检测算法[J]. 计算机科学, 2021, 48(2): 330-336. 10.11896/jsjkx.200100020 |
SUN W Y, JIN Z, ZHAO H T, et al. Cross-domain few-shot face spoofing detection method based on deep feature augmentation [J]. Computer Science, 2021, 48(2): 330-336. 10.11896/jsjkx.200100020 | |
6 | SHOME D, KAR T. FedAffect: few-shot federated learning for facial expression recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4151-4158. 10.1109/iccvw54120.2021.00463 |
7 | 尹力,周琪. 基于小样本数据和深度残差网络的月度供电量预测研究[J]. 计算机与数字工程, 2022, 50(2): 448-452. 10.3969/j.issn.1672-9722.2022.02.042 |
YIN L, ZHOU Q. Research on monthly power supply forecasting based on small sample data and deep residual network [J]. Computer and Digital Engineering, 2022, 50(2): 448-452. 10.3969/j.issn.1672-9722.2022.02.042 | |
8 | 董阳,潘海为,崔倩娜,等. 面向多模态磁共振脑瘤图像的小样本分割方法[J]. 计算机应用, 2021, 41(4): 1049-1054. 10.11772/j.issn.1001-9081.2020081388 |
DONG Y, PAN H W, CUI Q N, et al. Few-shot segmentation method for multi-modal magnetic resonance images of brain tumor [J]. Journal of Computer Applications, 2021, 41(4): 1049-1054. 10.11772/j.issn.1001-9081.2020081388 | |
9 | 刘颖,雷研博,范九伦,等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2): 297-315. 10.16383/j.aas.c190720 |
LIU Y, LEI Y B, FAN J L, et al. Survey on image classification technology based on small sample learning [J]. Acta Automatica Sinica, 2021, 47(2): 297-315. 10.16383/j.aas.c190720 | |
10 | MA J W, XIE H C, HAN G X, et al. Partner-assisted learning for few-shot image classification [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10553-10562. 10.1109/iccv48922.2021.01040 |
11 | YANG F Y, WANG R P, CHEN X L. SEGA: semantic guided attention on visual prototype for few-shot learning [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1586-1596. 10.1109/wacv51458.2022.00165 |
12 | WERTHEIMER D, TANG L, HARIHARAN B. Few-shot classification with feature map reconstruction networks[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8012-8021. 10.1109/cvpr46437.2021.00792 |
13 | ADAMKIEWICZ M, CHEN T, CACCAVALE A, et al. Vision-only robot navigation in a neural radiance world[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4606-4613. 10.1109/lra.2022.3150497 |
14 | 王贺鹏,李志斌,王立. 自动驾驶仿真的虚拟交通信号系统分析及实现[J]. 汽车实用技术, 2020(7): 34-37. |
WANG H P, LI Z B, WANG L. Analysis and implementation of virtual traffic signal system for autopilot simulation[J]. Automobile Applied Technology, 2020(7): 34-37. | |
15 | 陈涛,丘恩华,孔吉宏,等. 基于CAD的虚拟现实技术在水电站仿真系统的应用[J]. 计算机与数字工程, 2021, 49(4): 856-861. 10.3969/j.issn.1672-9722.2021.04.047 |
CHEN T, QIU E H, KONG J H, et al. Application of virtual reality technology based on CAD in hydropower station simulation system [J]. Computer and Digital Engineering, 2021, 49(4): 856-861. 10.3969/j.issn.1672-9722.2021.04.047 | |
16 | NIE J, XU N, ZHOU M, et al. 3D model classification based on few-shot learning [J]. Neurocomputing, 2020, 398: 539-546. 10.1016/j.neucom.2019.03.105 |
17 | WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920. 10.1109/cvpr.2015.7298801 |
18 | DENG Y, YANG J L, TONG X. Deformed implicit field: modeling 3D shapes with learned dense correspondence[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10281-10291. 10.1109/cvpr46437.2021.01015 |
19 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5105-5114. |
20 | LIU B, KANG H, LI H X, et al. Few-shot open-set recognition using meta-learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8795-8804. 10.1109/cvpr42600.2020.00882 |
21 | BAIK S, CHOI M, CHOI J, et al. Meta-learning with adaptive hyperparameters[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 20755-20765. |
22 | BAIK S, HONG S, LEE K M. Learning to forget for meta-learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2376-2384. 10.1109/cvpr42600.2020.00245 |
23 | BAIK S, CHOI J, KIM H, et al. Meta-learning with task-adaptive loss function for few-shot learning [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9445-9454. 10.1109/iccv48922.2021.00933 |
24 | GIDARIS S, KOMODAKIS N. Dynamic few-shot visual learning without forgetting[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4367-4375. 10.1109/cvpr.2018.00459 |
25 | GIDARIS S, KOMODAKIS N. Generating classification weights with GNN Denoising Autoencoders for few-shot learning[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 21-30. 10.1109/cvpr.2019.00011 |
26 | HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3037-3046. 10.1109/iccv.2017.328 |
27 | MUNKHDALAI T, YUAN X D, MEHRI S. Rapid adaptation with conditionally shifted neurons[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 3664-3673. |
28 | SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Δ-encoder: an effective sample synthesis method for few-shot object recognition[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 2850-2860. |
29 | GARCIA V, BRUNA J. Few-shot learning with graph neural networks[EB/OL]. (2018-02-20) [2022-04-12].. |
30 | YANG L, LI L L, ZHANG Z L, et al. DPGN: distribution propagation graph network for few-shot learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13387-13396. 10.1109/cvpr42600.2020.01340 |
31 | HAN X F, LEUNG T, JIA Y Q, et al. MatchNet: unifying feature and metric learning for patch-based matching [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3279-3286. 10.1109/cvpr.2015.7298948 |
32 | LI W B, WANG L, XU J L, et al. Revisiting local descriptor based image-to-class measure for few-shot learning[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7253-7260. 10.1109/cvpr.2019.00743 |
33 | LI H Y, EIGEN D, DODGE S, et al. Finding task-relevant features for few-shot learning by category traversal[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1-10. 10.1109/cvpr.2019.00009 |
34 | QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. 10.1109/cvpr.2017.16 |
35 | REN M Y, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. (2018-03-02) [2022-04-12]. . |
36 | SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation network for few-shot learning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. 10.1109/cvpr.2018.00131 |
37 | TANG S X, CHEN D P, BAI L, et al. Mutual CRF-GNN for few-shot learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2329-2339. 10.1109/cvpr46437.2021.00236 |
38 | DOERSCH C, GUPTA A, ZISSERMAN A. CrossTransformers: spatially-aware few-shot transfer[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020:21981-21993. |
39 | YE H J, HU H X, ZHAN D C, et al. Few-shot learning via embedding adaptation with set-to-set functions [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8805-8814. 10.1109/cvpr42600.2020.00883 |
40 | SHARMA C, KAUL M. Self-supervised few-shot learning on point clouds [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 7212-7221. |
41 | SAUDER J, SIEVERS B. Self-supervised deep learning on point clouds by reconstructing space[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 12962-12972. |
[1] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[2] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[3] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[4] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[5] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[6] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[7] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[8] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[9] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[10] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[11] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[12] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[13] | 魏文亮, 王阳萍, 岳彪, 王安政, 张哲. 基于光照权重分配和注意力的红外与可见光图像融合深度学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2183-2191. |
[14] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[15] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||