《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (9): 2963-2969.DOI: 10.11772/j.issn.1001-9081.2022091458
收稿日期:
2022-10-08
修回日期:
2022-12-01
接受日期:
2022-12-06
发布日期:
2023-02-22
出版日期:
2023-09-10
通讯作者:
张选德
作者简介:
路琨婷(1999—),女,陕西渭南人,硕士研究生,主要研究方向:遥感图像融合基金资助:
Kunting LU, Rongrong FEI, Xuande ZHANG()
Received:
2022-10-08
Revised:
2022-12-01
Accepted:
2022-12-06
Online:
2023-02-22
Published:
2023-09-10
Contact:
Xuande ZHANG
About author:
LU Kunting, born in 1999, M. S. candidate. Her research interests include remote sensing image fusion.Supported by:
摘要:
在遥感图像全色锐化中,传统的成分替换(CS)和多分辨率分析(MRA)方法的线性注入模型没有考虑用于全色锐化传感器的相对光谱响应,而基于深度学习的方法对原图像特征的提取不足会导致融合结果中的光谱和空间信息的丢失。针对以上问题,提出一种结合传统与深度学习方法的全色锐化方法CMRNet。首先,将CS和MRA与卷积神经网络(CNN)相结合以实现非线性从而提高全色锐化方法性能;其次,设计残差通道(RC)块实现多尺度特征信息的融合提取,并利用通道注意力(CA)自适应地为不同通道的特征图分配不同的权值,从而学习更有效的信息。在QuickBird和GF1卫星数据集上对CMRNet进行训练和测试,实验结果表明,在降尺度QuickBird和GF1数据集上,与经典方法PanNet相比,CMRNet的峰值信噪比(PSNR)分别提高了5.48%和9.62%,其他指标也均有显著提高。可见,CMRNet能实现较好的全色锐化效果。
中图分类号:
路琨婷, 费蓉蓉, 张选德. 融合卷积神经网络的遥感图像全色锐化[J]. 计算机应用, 2023, 43(9): 2963-2969.
Kunting LU, Rongrong FEI, Xuande ZHANG. Remote sensing image pansharpening by convolutional neural network[J]. Journal of Computer Applications, 2023, 43(9): 2963-2969.
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 25.255 0 | 0.630 4 | 0.791 1 | 0.132 6 | 5.254 0 | 0.738 5 |
GS | 25.294 5 | 0.642 3 | 0.808 0 | 0.131 2 | 4.991 3 | 0.734 7 |
Wavelet | 24.562 3 | 0.563 9 | 0.781 4 | 0.133 6 | 5.321 2 | 0.712 1 |
MTF-GLP | 26.294 0 | 0.658 0 | 0.855 8 | 0.126 0 | 4.844 1 | 0.783 6 |
DMDNet | 31.117 9 | 0.902 5 | 0.901 2 | 0.035 4 | 2.201 6 | 0.940 0 |
MSDCNN | 30.185 8 | 0.877 6 | 0.896 6 | 0.042 3 | 2.539 7 | 0.939 9 |
RSIFNN | 30.631 2 | 0.890 1 | 0.888 9 | 0.040 7 | 2.315 0 | 0.939 3 |
PanNet | 30.907 9 | 0.899 9 | 0.909 1 | 0.036 7 | 2.284 4 | 0.940 4 |
CMRNet | 32.602 7 | 0.920 9 | 0.934 1 | 0.030 8 | 1.953 6 | 0.942 6 |
表1 不同方法在降尺度QuickBird数据集上的结果对比
Tab. 1 Comparison of results of different methods on reduced-resolution QuickBird dataset
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 25.255 0 | 0.630 4 | 0.791 1 | 0.132 6 | 5.254 0 | 0.738 5 |
GS | 25.294 5 | 0.642 3 | 0.808 0 | 0.131 2 | 4.991 3 | 0.734 7 |
Wavelet | 24.562 3 | 0.563 9 | 0.781 4 | 0.133 6 | 5.321 2 | 0.712 1 |
MTF-GLP | 26.294 0 | 0.658 0 | 0.855 8 | 0.126 0 | 4.844 1 | 0.783 6 |
DMDNet | 31.117 9 | 0.902 5 | 0.901 2 | 0.035 4 | 2.201 6 | 0.940 0 |
MSDCNN | 30.185 8 | 0.877 6 | 0.896 6 | 0.042 3 | 2.539 7 | 0.939 9 |
RSIFNN | 30.631 2 | 0.890 1 | 0.888 9 | 0.040 7 | 2.315 0 | 0.939 3 |
PanNet | 30.907 9 | 0.899 9 | 0.909 1 | 0.036 7 | 2.284 4 | 0.940 4 |
CMRNet | 32.602 7 | 0.920 9 | 0.934 1 | 0.030 8 | 1.953 6 | 0.942 6 |
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 22.784 5 | 0.530 3 | 0.763 0 | 0.145 2 | 5.340 0 | 0.689 5 |
GS | 22.696 9 | 0.533 6 | 0.766 9 | 0.148 6 | 5.234 3 | 0.676 7 |
Wavelet | 22.862 0 | 0.481 4 | 0.785 1 | 0.135 1 | 5.058 6 | 0.681 7 |
MTF-GLP | 23.535 9 | 0.548 9 | 0.831 6 | 0.144 7 | 5.004 1 | 0.727 2 |
DMDNet | 31.249 2 | 0.899 9 | 0.953 0 | 0.038 6 | 2.414 9 | 0.926 9 |
MSDCNN | 29.734 9 | 0.846 9 | 0.927 4 | 0.050 2 | 2.896 2 | 0.923 8 |
RSIFNN | 29.916 7 | 0.855 8 | 0.932 1 | 0.047 7 | 2.818 7 | 0.923 0 |
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
表2 不同方法在降尺度GF1数据集上的结果对比
Tab. 2 Comparison of results of different methods on reduced-resolution GF1 dataset
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 22.784 5 | 0.530 3 | 0.763 0 | 0.145 2 | 5.340 0 | 0.689 5 |
GS | 22.696 9 | 0.533 6 | 0.766 9 | 0.148 6 | 5.234 3 | 0.676 7 |
Wavelet | 22.862 0 | 0.481 4 | 0.785 1 | 0.135 1 | 5.058 6 | 0.681 7 |
MTF-GLP | 23.535 9 | 0.548 9 | 0.831 6 | 0.144 7 | 5.004 1 | 0.727 2 |
DMDNet | 31.249 2 | 0.899 9 | 0.953 0 | 0.038 6 | 2.414 9 | 0.926 9 |
MSDCNN | 29.734 9 | 0.846 9 | 0.927 4 | 0.050 2 | 2.896 2 | 0.923 8 |
RSIFNN | 29.916 7 | 0.855 8 | 0.932 1 | 0.047 7 | 2.818 7 | 0.923 0 |
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
方法 | Dλ | DS | QNR |
---|---|---|---|
IHS | 0.101 4 | 0.222 9 | 0.700 1 |
GS | 0.081 0 | 0.200 7 | 0.737 3 |
Wavelet | 0.113 8 | 0.116 1 | 0.785 9 |
MTF-GLP | 0.123 3 | 0.129 4 | 0.765 8 |
DMDNet | 0.046 3 | 0.005 2 | 0.948 7 |
MSDCNN | 0.045 4 | 0.005 4 | 0.949 4 |
RSIFNN | 0.042 6 | 0.006 2 | 0.952 0 |
PanNet | 0.045 5 | 0.005 6 | 0.949 2 |
CMRNet | 0.043 0 | 0.005 0 | 0.952 2 |
表3 不同方法在全尺度QuickBird数据集上的结果对比
Tab. 3 Comparison of results of different methods on full-resolution QuickBird dataset
方法 | Dλ | DS | QNR |
---|---|---|---|
IHS | 0.101 4 | 0.222 9 | 0.700 1 |
GS | 0.081 0 | 0.200 7 | 0.737 3 |
Wavelet | 0.113 8 | 0.116 1 | 0.785 9 |
MTF-GLP | 0.123 3 | 0.129 4 | 0.765 8 |
DMDNet | 0.046 3 | 0.005 2 | 0.948 7 |
MSDCNN | 0.045 4 | 0.005 4 | 0.949 4 |
RSIFNN | 0.042 6 | 0.006 2 | 0.952 0 |
PanNet | 0.045 5 | 0.005 6 | 0.949 2 |
CMRNet | 0.043 0 | 0.005 0 | 0.952 2 |
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CP | 31.656 8 | 0.905 8 | 0.957 5 | 0.037 2 | 2.315 9 | 0.927 6 |
PC | 32.951 2 | 0.925 2 | 0.968 3 | 0.033 6 | 2.053 3 | 0.931 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
表4 不同损失函数与网络结构组合的消融实验结果对比
Tab. 4 Comparison of ablation experiment results of different loss functions and network structure combinations
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CP | 31.656 8 | 0.905 8 | 0.957 5 | 0.037 2 | 2.315 9 | 0.927 6 |
PC | 32.951 2 | 0.925 2 | 0.968 3 | 0.033 6 | 2.053 3 | 0.931 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
短连接 | 长连接 | CA | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|---|---|
√ | × | × | 32.816 9 | 0.924 5 | 0.968 3 | 0.032 7 | 2.072 2 | 0.931 2 |
√ | √ | × | 32.882 1 | 0.925 5 | 0.968 9 | 0.032 6 | 2.064 3 | 0.931 8 |
√ | √ | √ | 33.672 7 | 0.933 7 | 0.973 2 | 0.031 5 | 1.892 7 | 0.932 6 |
表5 不同模块的消融实验结果对比
Tab. 5 Comparison of ablation experimental results of different modules
短连接 | 长连接 | CA | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|---|---|
√ | × | × | 32.816 9 | 0.924 5 | 0.968 3 | 0.032 7 | 2.072 2 | 0.931 2 |
√ | √ | × | 32.882 1 | 0.925 5 | 0.968 9 | 0.032 6 | 2.064 3 | 0.931 8 |
√ | √ | √ | 33.672 7 | 0.933 7 | 0.973 2 | 0.031 5 | 1.892 7 | 0.932 6 |
方法 | 参数量/106 | 方法 | 参数量/106 |
---|---|---|---|
DMDNet | 0.19 | PanNet | 0.14 |
MSDCNN | 0.21 | CMRNet | 0.19 |
RSIFNN | 0.32 |
表6 不同方法的参数量
Tab. 6 Parameters of different methods
方法 | 参数量/106 | 方法 | 参数量/106 |
---|---|---|---|
DMDNet | 0.19 | PanNet | 0.14 |
MSDCNN | 0.21 | CMRNet | 0.19 |
RSIFNN | 0.32 |
1 | 吴宗骏,吴炜,杨晓敏,等. 改进的基于稀疏表示的全色锐化算法[J]. 计算机应用, 2019, 39(2): 540-545. 10.11772/j.issn.1001-9081.2018061374 |
WU Z J, WU W, YANG X M, et al. Improved panchromatic sharpening algorithm based on sparse representation[J]. Journal of Computer Applications, 2019, 39(2): 540-545. 10.11772/j.issn.1001-9081.2018061374 | |
2 | TU T M, HUANG P S, HUNG C L, et al. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312. 10.1109/lgrs.2004.834804 |
3 | THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1301-1312. 10.1109/tgrs.2007.912448 |
4 | LEE J, LEE C. Fast and efficient panchromatic sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 155-163. 10.1109/tgrs.2009.2028613 |
5 | MASI G, COZZOLINO D, VERDOLIVA L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7): No.594. 10.3390/rs8070594 |
6 | WEI Y C, YUAN Q Q. Deep residual learning for remote sensed imagery pansharpening[C]// Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing. Piscataway: IEEE, 2017: 1-4. 10.1109/rsip.2017.7958794 |
7 | YANG J F, FU X Y, HU Y W, et al. PanNet: a deep network architecture for pan-sharpening[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1753-1761. 10.1109/iccv.2017.193 |
8 | YUAN Q Q, WEI Y C, MENG X C, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 978-989. 10.1109/jstars.2018.2794888 |
9 | FU X Y, WANG W, HUANG Y, et al. Deep multiscale detail networks for multiband spectral image sharpening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2090-2104. 10.1109/tnnls.2020.2996498 |
10 | ZHANG H, MA J Y. GTP-PNet: a residual learning network based on gradient transformation prior for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172: 223-239. 10.1016/j.isprsjprs.2020.12.014 |
11 | WANG Y J, XIE Y Y, WU Y Y, et al. An unsupervised multi-scale generative adversarial network for remote sensing image pan-sharpening[C]// Proceedings of the 2022 International Conference on Multimedia Modeling, LNCS 13142. Cham: Springer, 2022: 356-368. |
12 | ZHOU H Y, LIU Q J, WENG D W, et al. Unsupervised cycle-consistent generative adversarial networks for pan sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5408814. 10.1109/tgrs.2022.3166528 |
13 | 胡高鹏,陈子鎏,王晓明,等. 基于深度渐进式反投影注意力网络的图像超分辨率重建[J]. 计算机应用, 2020, 40(7): 2077-2083. 10.11772/j.issn.1001-9081.2019122155 |
HU G P, CHEN Z L, WANG X M, et al. Image super-resolution reconstruction based on deep progressive back-projection attention network[J]. Journal of Computer Applications, 2020, 40(7): 2077-2083. 10.11772/j.issn.1001-9081.2019122155 | |
14 | TU T M, SU S C, SHYU H C, et al. A new look at IHS-like image fusion methods[J]. Information Fusion, 2001, 2(3): 177-186. 10.1016/s1566-2535(01)00036-7 |
15 | DOU W, CHEN Y H, LI X B, et al. A general framework for component substitution image fusion: an implementation using the fast image fusion method[J]. Computers and Geosciences, 2007, 33(2): 219-228. 10.1016/j.cageo.2006.06.008 |
16 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. |
17 | WALD L, RANCHIN T, MANGOLINI M. Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(6): 691-699. |
18 | AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(5): 591-596. 10.14358/pers.72.5.591 |
19 | SHAO Z F, CAI J J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1656-1669. 10.1109/jstars.2018.2805923 |
[1] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[2] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[3] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[4] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[5] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[6] | 王东炜, 刘柏辰, 韩志, 王艳美, 唐延东. 基于低秩分解和向量量化的深度网络压缩方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 1987-1994. |
[7] | 高阳峄, 雷涛, 杜晓刚, 李岁永, 王营博, 闵重丹. 基于像素距离图和四维动态卷积网络的密集人群计数与定位方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2233-2242. |
[8] | 姚迅, 秦忠正, 杨捷. 生成式标签对抗的文本分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1781-1785. |
[9] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[10] | 李健京, 李贯峰, 秦飞舟, 李卫军. 基于不确定知识图谱嵌入的多关系近似推理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1751-1759. |
[11] | 沈君凤, 周星辰, 汤灿. 基于改进的提示学习方法的双通道情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1796-1806. |
[12] | 高文烁, 陈晓云. 基于节点结构的点云分类网络[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1471-1478. |
[13] | 孙敏, 成倩, 丁希宁. 基于CBAM-CGRU-SVM的Android恶意软件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1539-1545. |
[14] | 席治远, 唐超, 童安炀, 王文剑. 基于双路时空网络的驾驶员行为识别[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1511-1519. |
[15] | 王杰, 孟华. 基于点云整体拓扑结构的图像分类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1107-1113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||