《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (10): 3267-3274.DOI: 10.11772/j.issn.1001-9081.2022091413
所属专题: 多媒体计算与计算机仿真
收稿日期:
2022-09-26
修回日期:
2022-12-04
接受日期:
2022-12-12
发布日期:
2023-03-07
出版日期:
2023-10-10
通讯作者:
李巍
作者简介:
李巍(1998—),男,江苏泰州人,硕士研究生,主要研究方向:缺陷检测、目标检测. wana@stu.scu.edu.cn基金资助:
Wei LI(), Sixin LIANG, Jianzhou ZHANG
Received:
2022-09-26
Revised:
2022-12-04
Accepted:
2022-12-12
Online:
2023-03-07
Published:
2023-10-10
Contact:
Wei LI
About author:
LI Wei, born in 1998, M. S. candidate. His research interests include defect detection, object detection.Supported by:
摘要:
针对目前图像缺陷检测模型对长尾缺陷数据集中尾部类检测效果较差的问题,提出一个基于梯度引导加权?延迟负梯度衰减损失(GGW-DND Loss)。首先,根据检测器分类节点的累积梯度比值分别对正负梯度重新加权,减轻尾部类分类器的受抑制状态;其次,当模型优化到一定阶段时,直接降低每个节点产生的负梯度,以增强尾部类分类器的泛化能力。实验结果表明,在自制图像缺陷数据集和NEU-DET(NEU surface defect database for Defect Detection Task)上,所提损失的尾部类平均精度均值(mAP)优于二分类交叉熵损失(BCE Loss),分别提高了32.02和7.40个百分点;与EQL v2(EQualization Loss v2)相比,分别提高了2.20和0.82个百分点,验证了所提损失能有效提升网络对尾部类的检测性能。
中图分类号:
李巍, 梁斯昕, 张建州. 基于梯度引导加权‒延迟负梯度衰减损失的长尾图像缺陷检测[J]. 计算机应用, 2023, 43(10): 3267-3274.
Wei LI, Sixin LIANG, Jianzhou ZHANG. Long-tailed image defect detection based on gradient-guide weighted-deferred negative gradient decay loss[J]. Journal of Computer Applications, 2023, 43(10): 3267-3274.
模型 | 骨干网络 | 损失函数 | mAP | mAPf | mAPr |
---|---|---|---|---|---|
Faster R-CNN | ResNet-50 | CE Loss | 70.05 | 92.04 | 48.06 |
BCE Loss | 68.31 | 92.60 | 44.02 | ||
SSD | VGG16 | CE Loss | 64.61 | 86.68 | 42.54 |
YOLOv5 | CSP-DarkNet | BCE Loss | 49.96 | 80.67 | 19.24 |
表1 不同缺陷检测网络的检测结果对比 (%)
Tab. 1 Comparison of detection results of different defect detection networks
模型 | 骨干网络 | 损失函数 | mAP | mAPf | mAPr |
---|---|---|---|---|---|
Faster R-CNN | ResNet-50 | CE Loss | 70.05 | 92.04 | 48.06 |
BCE Loss | 68.31 | 92.60 | 44.02 | ||
SSD | VGG16 | CE Loss | 64.61 | 86.68 | 42.54 |
YOLOv5 | CSP-DarkNet | BCE Loss | 49.96 | 80.67 | 19.24 |
损失函数 | mAP | mAPf | mAPr |
---|---|---|---|
CE Loss | 70.05 | 92.04 | 48.06 |
BCE Loss | 68.31 | 92.60 | 44.02 |
Focal Loss | 54.05 | 87.28 | 20.82 |
Logit Adjustment | 72.12 | 86.72 | 57.52 |
EQL | 73.92 | 91.97 | 55.87 |
BAGS | 82.49 | 91.62 | 73.35 |
EQL v2 | 83.06 | 92.28 | 73.84 |
GGW-DND Loss | 84.09 | 92.13 | 76.04 |
表2 基于不同损失函数的检测结果对比 (%)
Tab. 2 Comparison of detection results based on different loss functions
损失函数 | mAP | mAPf | mAPr |
---|---|---|---|
CE Loss | 70.05 | 92.04 | 48.06 |
BCE Loss | 68.31 | 92.60 | 44.02 |
Focal Loss | 54.05 | 87.28 | 20.82 |
Logit Adjustment | 72.12 | 86.72 | 57.52 |
EQL | 73.92 | 91.97 | 55.87 |
BAGS | 82.49 | 91.62 | 73.35 |
EQL v2 | 83.06 | 92.28 | 73.84 |
GGW-DND Loss | 84.09 | 92.13 | 76.04 |
mAP/% | mAPf /% | mAPr /% | ||
---|---|---|---|---|
6 | 0.6 | 82.96 | 92.20 | 73.71 |
0.7 | 82.60 | 90.83 | 74.37 | |
0.8 | 83.73 | 91.72 | 75.73 | |
8 | 0.6 | 82.09 | 91.79 | 72.39 |
0.7 | 83.69 | 92.12 | 75.26 | |
0.8 | 80.70 | 90.73 | 70.67 | |
10 | 0.6 | 83.07 | 91.90 | 74.25 |
0.7 | 81.92 | 91.41 | 72.43 | |
0.8 | 76.62 | 89.68 | 63.56 | |
12 | 0.6 | 80.48 | 91.83 | 69.12 |
0.7 | 80.46 | 91.19 | 69.73 | |
0.8 | 75.10 | 89.14 | 61.07 |
表3 不同组合参数β和γ下的检测结果
Tab. 3 Detection results under different combinations of β and γ
mAP/% | mAPf /% | mAPr /% | ||
---|---|---|---|---|
6 | 0.6 | 82.96 | 92.20 | 73.71 |
0.7 | 82.60 | 90.83 | 74.37 | |
0.8 | 83.73 | 91.72 | 75.73 | |
8 | 0.6 | 82.09 | 91.79 | 72.39 |
0.7 | 83.69 | 92.12 | 75.26 | |
0.8 | 80.70 | 90.73 | 70.67 | |
10 | 0.6 | 83.07 | 91.90 | 74.25 |
0.7 | 81.92 | 91.41 | 72.43 | |
0.8 | 76.62 | 89.68 | 63.56 | |
12 | 0.6 | 80.48 | 91.83 | 69.12 |
0.7 | 80.46 | 91.19 | 69.73 | |
0.8 | 75.10 | 89.14 | 61.07 |
mAP/% | mAPf /% | mAPr /% | |
---|---|---|---|
1 | 77.75 | 91.29 | 64.22 |
2 | 79.37 | 91.67 | 67.06 |
4 | 81.54 | 91.80 | 71.29 |
8 | 83.69 | 92.12 | 75.26 |
12 | 82.38 | 91.49 | 73.27 |
表4 不同α下的检测结果
Tab. 4 Detection results at different α
mAP/% | mAPf /% | mAPr /% | |
---|---|---|---|
1 | 77.75 | 91.29 | 64.22 |
2 | 79.37 | 91.67 | 67.06 |
4 | 81.54 | 91.80 | 71.29 |
8 | 83.69 | 92.12 | 75.26 |
12 | 82.38 | 91.49 | 73.27 |
mAP/% | mAPf /% | mAPr /% | |
---|---|---|---|
1 | 83.06 | 92.28 | 73.84 |
2 | 83.68 | 92.38 | 74.98 |
4 | 83.78 | 92.16 | 75.39 |
6 | 84.09 | 92.13 | 76.04 |
8 | 83.69 | 92.12 | 75.26 |
12 | 83.99 | 92.57 | 75.42 |
表5 不同λ下的检测结果
Tab. 5 Detection results at different λ
mAP/% | mAPf /% | mAPr /% | |
---|---|---|---|
1 | 83.06 | 92.28 | 73.84 |
2 | 83.68 | 92.38 | 74.98 |
4 | 83.78 | 92.16 | 75.39 |
6 | 84.09 | 92.13 | 76.04 |
8 | 83.69 | 92.12 | 75.26 |
12 | 83.99 | 92.57 | 75.42 |
损失函数 | 马赛克 | 偏色 | 亮度异常 | 高斯噪声 | 椒盐噪声 | 坏块 |
---|---|---|---|---|---|---|
BCE Loss | 0.73 | 0.65 | 0.67 | 0.13 | 0.10 | 0.18 |
GGW-DND Loss | 1.22 | 1.16 | 1.16 | 0.84 | 0.84 | 0.98 |
表6 基于BCE Loss和GGW-DND Loss的分类器节点的累计梯度比值
Tab. 6 Cumulative gradient ratios of classifier nodes based on BCE Loss and GGW-DND Loss
损失函数 | 马赛克 | 偏色 | 亮度异常 | 高斯噪声 | 椒盐噪声 | 坏块 |
---|---|---|---|---|---|---|
BCE Loss | 0.73 | 0.65 | 0.67 | 0.13 | 0.10 | 0.18 |
GGW-DND Loss | 1.22 | 1.16 | 1.16 | 0.84 | 0.84 | 0.98 |
GGW Loss | DND Loss | mAP | mAPf | mAPr |
---|---|---|---|---|
68.31 | 92.60 | 44.02 | ||
√ | 83.06 | 92.28 | 73.84 | |
√ | √ | 84.09 | 92.13 | 76.04 |
表7 消融实验结果 (%)
Tab. 7 Results of ablation experiment
GGW Loss | DND Loss | mAP | mAPf | mAPr |
---|---|---|---|---|
68.31 | 92.60 | 44.02 | ||
√ | 83.06 | 92.28 | 73.84 | |
√ | √ | 84.09 | 92.13 | 76.04 |
缺陷类型 | 训练集样本数 | 测试集样本数 |
---|---|---|
银纹 | 482 | 205 |
夹杂物 | 630 | 287 |
斑块 | 570 | 270 |
麻点表面 | 4 | 128 |
轧入氧化皮 | 3 | 185 |
划痕 | 3 | 155 |
表8 NEU-DET数据集
Tab. 8 NEU-DET dataset
缺陷类型 | 训练集样本数 | 测试集样本数 |
---|---|---|
银纹 | 482 | 205 |
夹杂物 | 630 | 287 |
斑块 | 570 | 270 |
麻点表面 | 4 | 128 |
轧入氧化皮 | 3 | 185 |
划痕 | 3 | 155 |
损失函数 | mAP | mAPf | mAPr |
---|---|---|---|
BCE Loss[ | 32.38 | 64.76 | 0.01 |
Focal Loss[ | 33.45 | 66.90 | 0.00 |
Logit Adjustment[ | 34.08 | 66.24 | 1.93 |
EQL[ | 36.48 | 69.76 | 3.20 |
BAGS[ | 34.89 | 66.03 | 3.75 |
EQL v2[ | 36.71 | 66.83 | 6.59 |
GGW-DND Loss | 36.85 | 66.29 | 7.41 |
表9 NEU-DET数据集上基于不同损失函数的检测结果比较 (%)
Tab. 9 Comparison of detection results based on different loss functions on NEU-DET dataset
损失函数 | mAP | mAPf | mAPr |
---|---|---|---|
BCE Loss[ | 32.38 | 64.76 | 0.01 |
Focal Loss[ | 33.45 | 66.90 | 0.00 |
Logit Adjustment[ | 34.08 | 66.24 | 1.93 |
EQL[ | 36.48 | 69.76 | 3.20 |
BAGS[ | 34.89 | 66.03 | 3.75 |
EQL v2[ | 36.71 | 66.83 | 6.59 |
GGW-DND Loss | 36.85 | 66.29 | 7.41 |
1 | 王志明. 无参考图像质量评价综述[J]. 自动化学报, 2015, 41(6):1062-1079. 10.16383/j.aas.2015.c140404 |
WANG Z M. Review of no-reference image quality assessment[J]. Acta Automatica Sinica, 2015, 41(6): 1062-1079. 10.16383/j.aas.2015.c140404 | |
2 | 房亚男. 数字视频图像质量检测关键技术研究[J]. 科技创新导报, 2013(16): 22-26. 10.3969/j.issn.1674-098X.2013.16.016 |
FANG Y N. Research on key technologies of digital video image quality detection[J]. Science and Technology Innovation Herald, 2013(16): 22-26. 10.3969/j.issn.1674-098X.2013.16.016 | |
3 | WANG F L, ZUO B. Detection of surface cutting defect on MagNet using Fourier image reconstruction[J]. Journal of Central South University, 2016, 23(5): 1123-1131. 10.1007/s11771-016-0362-y |
4 | WEE C Y, PARAMESRAN R. Image sharpness measure using eigenvalues[C]// Proceedings of the 9th International Conference on Signal Processing. Piscataway: IEEE, 2008: 840-843. 10.1109/icosp.2008.4697259 |
5 | HOU Z, PARKER J M. Texture defect detection using support vector machines with adaptive Gabor wavelet features[C]// Proceedings of the 7th IEEE Workshops on Applications of Computer Vision. Piscataway: IEEE, 2005: 275-280. 10.1109/acvmot.2005.115 |
6 | CHA Y J, CHOI W, SUH G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747. 10.1111/mice.12334 |
7 | TAO X, ZHANG D P, WANG Z H, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498. 10.1109/tsmc.2018.2871750 |
8 | HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. 10.1109/tim.2019.2915404 |
9 | 陶显,侯伟,徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5):1017-1034. |
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034. | |
10 | LI J Y, SU Z F, GENG J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine, 2018, 51(21): 76-81. 10.1016/j.ifacol.2018.09.412 |
11 | ZHANG C B, CHANG C C, JAMSHIDI M. Concrete bridge surface damage detection using a single-stage detector[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(4): 389-409. 10.1111/mice.12500 |
12 | CHEN S H, TSAI C C. SMD LED chips defect detection using a YOLOv3-dense model[J]. Advanced Engineering Informatics, 2021, 47: No.101255. 10.1016/j.aei.2021.101255 |
13 | RUFF L, VANDERMEULEN R A, GÖRNITZ N, et al. Deep one-class classification[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 4393-4402. |
14 | BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191. 10.1109/cvpr42600.2020.00424 |
15 | LIZNERSKI P, RUFF L, VANDERMEULEN R A, et al. Explainable deep one-class classification[EB/OL]. (2021-03-18) [2022-09-09].. |
16 | GOLAN I, EL-YANIV R. Deep anomaly detection using geometric transformations[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 9781-9791. |
17 | HASELMANN M, GRUBER D P, TABATABAI P. Anomaly detection using deep learning based image completion[C]// Proceedings of the 17th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2018: 1237-1242. 10.1109/icmla.2018.00201 |
18 | SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]// Proceedings of the MLSDA 2nd Workshop on Machine Learning for Sensory Data Analysis. New York: ACM, 2014: 4-11. 10.1145/2689746.2689747 |
19 | ZHOU C, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 665-674. 10.1145/3097983.3098052 |
20 | GUPTA K, BHAVSAR A, SAO A K. Detecting mitotic cells in HEp-2 images as anomalies via one class classifier[J]. Computers in Biology and Medicine, 2019, 111: No.103328. 10.1016/j.compbiomed.2019.103328 |
21 | NAPOLETANO P, PICCOLI F, SCHETTINI R. Anomaly detection in nanofibrous materials by CNN-based self-similarity[J]. Sensors, 2018, 18(1): No.209. 10.3390/s18010209 |
22 | CANDÈS E J, LI X D, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): No.11. 10.1145/1970392.1970395 |
23 | GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714. 10.1109/iccv.2019.00179 |
24 | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// Proceedings of the 2017 International Conference on Information Processing in Medical Imaging, LNCS 10265. Cham: Springer, 2017: 146-157. |
25 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. |
26 | EVERINGHAM M, van GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. 10.1007/s11263-009-0275-4 |
27 | BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249-259. 10.1016/j.neunet.2018.07.011 |
28 | HE H B, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284. 10.1109/tkde.2008.239 |
29 | OUYANG W L, WANG X G, ZHANG C, et al. Factors in finetuning deep model for object detection with long-tail distribution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 864-873. 10.1109/cvpr.2016.100 |
30 | BYRD J, LIPTON Z C. What is the effect of importance weighting in deep learning?[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 872-881. |
31 | SHEN L, LIN Z C, HUANG Q M. Relay backpropagation for effective learning of deep convolutional neural networks[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham: Springer, 2016: 467-482. |
32 | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. 10.1613/jair.953 |
33 | CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9260-9269. 10.1109/cvpr.2019.00949 |
34 | WANG Y X, RAMANAN D, HEBERT M. Learning to model the tail[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 7032-7042. |
35 | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5375-5384. 10.1109/cvpr.2016.580 |
36 | ZHANG X, FANG Z Y, WEN Y D, et al. Range loss for deep face recognition with long-tailed training data[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5419-5428. 10.1109/iccv.2017.578 |
37 | CAO K D, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 1567-1578. |
38 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. 10.1109/iccv.2017.324 |
39 | LI B Y, LIU Y, WANG X G. Gradient harmonized single-stage detector[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 8577-8584. 10.1609/aaai.v33i01.33018577 |
40 | LI Y, WANG T, KANG B Y, et al. Overcoming classifier imbalance for long-tail object detection with balanced group softmax[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10988-10997. 10.1109/cvpr42600.2020.01100 |
41 | YIN X, YU X, SOHN K, et al. Feature transfer learning for face recognition with under-represented data[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5697-5706. 10.1109/cvpr.2019.00585 |
42 | LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2532-2541. 10.1109/cvpr.2019.00264 |
43 | CHU P, BIAN X, LIU S P, et al. Feature space augmentation for long-tailed data[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12374. Cham: Springer, 2020: 694-710. |
44 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 |
45 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
46 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. 10.1109/iccv.2017.322 |
47 | TAN J R, LU X, ZHANG G, et al. Equalization loss v2: a new gradient balance approach for long-tailed object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1685-1694. 10.1109/cvpr46437.2021.00173 |
48 | HE Y, SONG K, MENG Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1493-1504. 10.1109/tim.2019.2915404 |
49 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-07-13].. |
50 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
51 | KUZNETSOVA A, MALEVA T, SOLOVIEV V. YOLOv5 versus YOLOv3 for apple detection[M]// KRAVETS A G, BOLSHAKOV A A, SHCHERBAKOV M. Cyber-Physical Systems: Modelling and Intelligent Control, SSDC 338. Cham: Springer, 2021: 349-358. 10.1007/978-3-030-66077-2_28 |
52 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2022-07-24].. |
53 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-08-09].. 10.1109/cvpr.2017.690 |
54 | MENON A K, JAYASUMANA S, RAWAT A S, et al. Long-tail learning via logit adjustment[EB/OL]. (2021-07-09) [2022-05-22].. |
55 | TAN J R, WANG C B, LI B Y, et al. Equalization loss for long-tailed object recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11659-11668. 10.1109/cvpr42600.2020.01168 |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[3] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[4] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[5] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[6] | 王东炜, 刘柏辰, 韩志, 王艳美, 唐延东. 基于低秩分解和向量量化的深度网络压缩方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 1987-1994. |
[7] | 高阳峄, 雷涛, 杜晓刚, 李岁永, 王营博, 闵重丹. 基于像素距离图和四维动态卷积网络的密集人群计数与定位方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2233-2242. |
[8] | 沈君凤, 周星辰, 汤灿. 基于改进的提示学习方法的双通道情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1796-1806. |
[9] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[10] | 李健京, 李贯峰, 秦飞舟, 李卫军. 基于不确定知识图谱嵌入的多关系近似推理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1751-1759. |
[11] | 姚迅, 秦忠正, 杨捷. 生成式标签对抗的文本分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1781-1785. |
[12] | 孙敏, 成倩, 丁希宁. 基于CBAM-CGRU-SVM的Android恶意软件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1539-1545. |
[13] | 席治远, 唐超, 童安炀, 王文剑. 基于双路时空网络的驾驶员行为识别[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1511-1519. |
[14] | 高文烁, 陈晓云. 基于节点结构的点云分类网络[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1471-1478. |
[15] | 王杰, 孟华. 基于点云整体拓扑结构的图像分类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1107-1113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||