1 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.
|
2 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
3 |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]// Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham: Springer, 2016: 424-432.
|
4 |
OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. [2023-12-19]..
|
5 |
ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent Residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[EB/OL]. [2023-12-19]..
|
6 |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/ International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11.
|
7 |
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2023-12-24]..
|
8 |
欧宇轩,高敏,赵地,等. SA-TF-UNet:基于空间注意力机制和Transformer的MRI海马体分割[J]. 中国图象图形学报, 2023, 28(10): 3191-3202.
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
|
10 |
FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2023-12-22]..
|
11 |
LI Z, ZHOU F. FSSD: feature fusion single shot MultiBox detector [EB/OL]. [2023-12-13]..
|
12 |
LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 4404-419.
|
13 |
ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4203-4212.
|
14 |
ZHAO Q, SHENG T, WANG Y, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 9259-9266.
|
15 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
|
16 |
LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]// Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186.
|
17 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]// Proceedings of the 14th International Workshop and Conference Proceedings on Artificial Intelligence and Statistics. New York: JMLR.org, 2011: 315-323.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
19 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
|
20 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
|
21 |
WU D, CAO L, ZHOU P, et al. Infrared small-target detection based on radiation characteristics with a multimodal feature fusion network[J]. Remote Sensing, 2022, 14(15): No.3570.
|
22 |
JADON S. A survey of loss functions for semantic segmentation[C]// Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway: IEEE, 2020: 1-7.
|
23 |
兰冬雷,王晓东,姚宇,等. 基于邻近切片注意力融合的直肠癌分割网络[J]. 计算机应用, 2023, 43(12): 3918-3926.
|
24 |
方超伟,李雪,李钟毓,等. 基于双模型交互学习的半监督医学图像分割[J]. 自动化学报, 2023, 49(4): 805-819.
|
25 |
JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]// Proceedings of the 2020 International Conference on MultiMedia Modeling, LNCS 11962. Cham: Springer, 2020: 451-462.
|
26 |
STAAL J, ABRÀMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509.
|