| 1 | SAINT-ANTOINE M M, SINGH A. Network inference in systems biology: Recent developments, challenges, and applications [J]. Current Opinion in Biotechnology, 2020, 63: 89-98.  10.1016/j.copbio.2019.12.002 | 
																													
																						| 2 | DELGADO F M, GÓMEZ-VELA F. Computational methods for gene regulatory networks reconstruction and analysis: a review [J]. Artificial Intelligence in Medicine, 2019, 95: 133-145.  10.1016/j.artmed.2018.10.006 | 
																													
																						| 3 | ZHAO M, HE W, TANG J, et al. A comprehensive overview and critical evaluation of gene regulatory network inference technologies [J]. Briefings in Bioinformatics, 2021, 22(5): bbab009.  10.1093/bib/bbab009 | 
																													
																						| 4 | MU Y, LIU X, WANG L. A Pearson’s correlation coefficient based decision tree and its parallel implementation [J]. Information Sciences, 2018, 435: 40-58.  10.1016/j.ins.2017.12.059 | 
																													
																						| 5 | SHI J, ZHAO J, LI T, et al. Detecting direct associations in a network by information theoretic approaches [J]. SCIENCE CHINA Mathematics, 2019, 62: 823-838.  10.1007/s11425-017-9206-0 | 
																													
																						| 6 | MARGOLIN A A, NEMENMAN I, BASSO K, et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context [J]. BMC Bioinformatics, 2006, 7: No. S7.  10.1186/1471-2105-7-s1-s7 | 
																													
																						| 7 | LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis [J]. BMC Bioinformatics, 2008, 9: No. 559.  10.1186/1471-2105-9-559 | 
																													
																						| 8 | SAITO S, HIROKAWA T, HORIMOTO K. Discovery of chemical compound groups with common structures by a network analysis approach (affinity prediction method) [J]. Journal of Chemical Information and Modeling, 2011, 51: 61-68.  10.1021/ci100262s | 
																													
																						| 9 | ZHANG X, ZHAO X-M, HE K, et al. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information [J]. Bioinformatics, 2012, 28(1): 98-104.  10.1093/bioinformatics/btr626 | 
																													
																						| 10 | ZHANG X, ZHAO J, HAO J-K, et al. Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks [J]. Nucleic Acids Research, 2015, 43(5): e31.  10.1093/nar/gku1315 | 
																													
																						| 11 | ZHAO J, ZHOU Y, ZHANG X, et al. Part mutual information for quantifying direct associations in networks [J]. Proceedings of the National Academy of Sciences, 2016, 113(18): 5130-5135.  10.1073/pnas.1522586113 | 
																													
																						| 12 | 雷继萌.基于混合熵优化互信息的基因网络构建方法研究[D].武汉:华中农业大学, 2022: 18-25.  10.1093/bioinformatics/btac717 | 
																													
																						|  | LEI J M. Research of gene network construction method based on mixed entropy optimizing mutual information [D]. Wuhan: Huazhong Agricultural University, 2022: 18-25.  10.1093/bioinformatics/btac717 | 
																													
																						| 13 | AGHDAM R, GANJALI M, ZHANG X, et al. CN: A consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test [J]. Molecular BioSystems, 2015, 11(3): 942-949.  10.1039/c4mb00413b | 
																													
																						| 14 | YAN Y, ZHANG X, TIAN T. Inference method for reconstructing regulatory networks using statistical path-consistency algorithm and mutual information [C]// Proceedings of the 2020 International Conference on Intelligent Computing Theories and Application. Cham: Springer, 2020: 45-56.  10.1007/978-3-030-60802-6_5 | 
																													
																						| 15 | 肖非.基于候选基因选择的调控网络构建方法[D].西安:西安电子科技大学, 2015: 19-23. | 
																													
																						|  | XIAO F. Reconstruction of regulatory networks based on selection of candidate gene [D]. Xi’an: Xidian University, 2015: 19-23. | 
																													
																						| 16 | AGHDAM R, GANJALI M, ESLAHCHI C. IPCA-CMI: an algorithm for inferring gene regulatory networks based on a combination of PCA-CMI and MIT score [J]. PLoS ONE, 2014, 9(4): e92600.  10.1371/journal.pone.0092600 | 
																													
																						| 17 | MAHMOODI S H, AGHDAM R, ESLAHCHI C. An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests [J]. Scientific Reports, 2021, 11: No.7605.  10.1038/s41598-021-87074-5 | 
																													
																						| 18 | XU J, YANG G, LIU G, et al. Inferring gene regulatory networks via ensemble path consistency algorithm based on conditional mutual information [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20(3): 1807-1816.  10.1109/tcbb.2022.3220581 | 
																													
																						| 19 | ZHAO R, WANG B, HAN L, et al. New results on model reconstruction of Boolean networks with application to gene regulatory networks [J]. Mathematical Methods in the Applied Sciences, 2023, 46(4): 3741-3757.  10.1002/mma.8719 | 
																													
																						| 20 | QU L, WANG Z, LI C, et al. Dynamic Bayesian network modeling based on structure prediction for gene regulatory network [J]. IEEE Access, 2021, 9: 123616-123634.  10.1109/access.2021.3109133 | 
																													
																						| 21 | DU Z, ZHONG X, WANG F, et al. Inference of gene regulatory networks based on the Light Gradient Boosting Machine [J]. Computational Biology and Chemistry, 2022, 101: 107769.  10.1016/j.compbiolchem.2022.107769 | 
																													
																						| 22 | PUŠNIK Ž, MRAZ M, ZIMIC N, et al. Review and assessment of Boolean approaches for inference of gene regulatory networks [J]. Heliyon, 2022, 8(8): e10222.  10.1016/j.heliyon.2022.e10222 | 
																													
																						| 23 | YANG B, CHEN Y. Overview of gene regulatory network inference based on differential equation models [J]. Current Protein & Peptide Science, 2020, 21(11): 1054-1059.  10.2174/1389203721666200213103350 | 
																													
																						| 24 | HUYNH-THU V A, IRRTHUM A, WEHENKEL L, et al. Inferring regulatory networks from expression data using tree-based methods [J]. PLoS ONE, 2010, 5(9): e12776.  10.1371/journal.pone.0012776 | 
																													
																						| 25 | ZHENG R, LI M, CHEN X, et al. BiXGBoost: A scalable, flexible boosting-based method for reconstructing gene regulatory networks [J]. Bioinformatics, 2019, 35(11): 1893-1900.  10.1093/bioinformatics/bty908 | 
																													
																						| 26 | VAN DEN BROECK L, GORDON M, INZÉ D, et al. Gene regulatory network inference: connecting plant biology and mathematical modeling [J]. Frontiers in Genetics, 2020, 11: 457.  10.3389/fgene.2020.00457 | 
																													
																						| 27 | SANTILLÁN M. On the use of the Hill functions in mathematical models of gene regulatory networks [J]. Mathematical Modelling of Natural Phenomena, 2008, 3(2): 85-97.  10.1051/mmnp:2008056 | 
																													
																						| 28 | SCHWARZ G. Estimating the dimension of a model [J]. The Annals of Statistics, 1978, 6(2): 461-464.  10.1214/aos/1176344136 | 
																													
																						| 29 | MEYER P, COKELAER T, CHANDRAN D, et al. Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach [J]. BMC Systems Biology, 2014, 8: No. 13.  10.1186/1752-0509-8-13 | 
																													
																						| 30 | KASS R E, RAFTERY A E. Bayes factors [J]. Journal of the American Statistical Association, 1995, 90: 773-795.  10.1080/01621459.1995.10476572 | 
																													
																						| 31 | HINDMARSH A C, BROWN P N, GRANT K E, et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers [J]. ACM Transactions on Mathematical Software, 2005, 31(3): 363-396.  10.1145/1089014.1089020 | 
																													
																						| 32 | MCKAY M D, BECKMAN R, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code [J]. Technometrics, 2000, 42(1): 55-61.  10.1080/00401706.2000.10485979 |