| 1 | 宁吉喆. 第七次全国人口普查主要数据情况[J]. 中国统计, 2021(5): 4-5.  10.18356/9789210058025c044 | 
																													
																						|  | NING J Z. Main data of the seventh National Census[J]. China Statistics, 2021(5): 4-5.  10.18356/9789210058025c044 | 
																													
																						| 2 | 高茂龙,宋岳涛. 中国老年人跌倒发生率meta分析[J]. 北京医学, 2014, 36(10):796-798. | 
																													
																						|  | GAO M L, SONG Y T. Meta-analysis of the prevalence of fall in elderly in China[J]. Beijing Medical Journal, 2014, 36(10): 796-798. | 
																													
																						| 3 | 张庆来,张林. 老年人跌倒的研究进展[J]. 中国老年学杂志, 2016, 36(1):248-249.  10.3969/j.issn.1005-9202.2016.01.112 | 
																													
																						|  | ZHANG Q L, ZHANG L. Advances in falls in the elderly[J]. Chinese Journal of Gerontology, 2016, 36(1):248-249.  10.3969/j.issn.1005-9202.2016.01.112 | 
																													
																						| 4 | MUBASHIR M, SHAO L, SEED L. A survey on fall detection: principles and approaches[J]. Neurocomputing, 2013, 100: 144-152.  10.1016/j.neucom.2011.09.037 | 
																													
																						| 5 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015,1:91-99. | 
																													
																						| 6 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.  10.1109/cvpr.2016.91 | 
																													
																						| 7 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. | 
																													
																						| 8 | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-25) [2022-04-07]..  10.5260/chara.21.2.8 | 
																													
																						| 9 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635.  10.1109/iccv.2019.00972 | 
																													
																						| 10 | FENG Q, GAO C Q, WANG L, et al. Spatio-temporal fall event detection in complex scenes using attention guided LSTM[J]. Pattern Recognition Letters, 2020, 130: 242-249.  10.1016/j.patrec.2018.08.031 | 
																													
																						| 11 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2022-04-07]..  10.1109/cvpr.2017.690 | 
																													
																						| 12 | 朱艳,张亚萍,利曙生,等. 基于深度视觉传感器和卷积神经网络的跌倒检测算法[J]. 光学技术, 2021, 47(1):56-61. | 
																													
																						|  | ZHU Y, ZHANG Y P, LI S S, et al. Fall detection algorithm based on depth vision sensor and neural network[J]. Optical Technique, 2021, 47(1):56-61. | 
																													
																						| 13 | CHEN Y, LI W T, WANG L, et al. Vision-based fall event detection in complex background using attention guided Bi-directional LSTM [J]. IEEE Access, 2020, 8: 161337-161348.  10.1109/access.2020.3021795 | 
																													
																						| 14 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2980-2988.  10.1109/iccv.2017.322 | 
																													
																						| 15 | 马露,裴伟,朱永英,等. 基于深度学习的跌倒行为识别[J]. 计算机科学, 2019, 46(9):106-112.  10.11896/j.issn.1002-137X.2019.09.014 | 
																													
																						|  | MA L, PEI W, ZHU Y Y, et al. Fall action recognition based on deep learning [J]. Computer Science, 2019, 46(9):106-112.  10.11896/j.issn.1002-137X.2019.09.014 | 
																													
																						| 16 | CAI X, LI S Y, LIU X Y, et al. Vision-based fall detection with multi-task hourglass convolutional auto-encoder[J]. IEEE Access, 2020, 8: 44493-44502.  10.1109/access.2020.2978249 | 
																													
																						| 17 | 曹建荣,吕俊杰,武欣莹,等. 融合运动特征和深度学习的跌倒检测算法[J]. 计算机应用, 2021, 41(2):583-589.  10.11772/j.issn.1001-9081.2020050705 | 
																													
																						|  | CAO J R, LYU J J, WU X Y, et al. Fall detection algorithm integrating motion features and deep learning[J]. Journal of Computer Applications, 2021, 41(2): 583-589.  10.11772/j.issn.1001-9081.2020050705 | 
																													
																						| 18 | GARCÍA E, VILLAR M, FÁÑEZ M, et al. Towards effective detection of elderly falls with CNN-LSTM neural networks[J]. Neurocomputing, 2022, 500:231-240.  10.1016/j.neucom.2021.06.102 | 
																													
																						| 19 | WANG B H, YU J, WANG K, et al. Fall detection based on dual-channel feature integration [J]. IEEE Access, 2020, 8: 103443-103453.  10.1109/access.2020.2999503 | 
																													
																						| 20 | WANG W H, XIE E Z, LI X, et al. Pyramid vision Transformer: a versatile backbone for dense prediction without convolutions[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558.  10.1109/iccv48922.2021.00061 | 
																													
																						| 21 | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 630-645. | 
																													
																						| 22 | MA J L, CHEN B. Dual refinement feature pyramid networks for object detection [EB/OL]. (2020-12-04) [2022-04-07].. | 
																													
																						| 23 | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12993-13000.  10.1609/aaai.v34i07.6999 | 
																													
																						| 24 | WANG W H, XIE E Z, LI X, et al. PVTv2: improved baselines with pyramid vision transformer [J]. Computational Visual Media, 2022, 8(3): 415-424.  10.1007/s41095-022-0274-8 | 
																													
																						| 25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |