《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (5): 1511-1519.DOI: 10.11772/j.issn.1001-9081.2023050800
所属专题: 第十九届中国机器学习会议(CCML 2023)
• 第十九届中国机器学习会议(CCML 2023) • 上一篇 下一篇
收稿日期:
2023-06-21
修回日期:
2023-07-14
接受日期:
2023-07-24
发布日期:
2023-08-01
出版日期:
2024-05-10
通讯作者:
唐超
作者简介:
席治远(1995—),男,安徽合肥人,硕士研究生,CCF会员,主要研究方向:机器学习、计算机视觉基金资助:
Zhiyuan XI1, Chao TANG1(), Anyang TONG1, Wenjian WANG2
Received:
2023-06-21
Revised:
2023-07-14
Accepted:
2023-07-24
Online:
2023-08-01
Published:
2024-05-10
Contact:
Chao TANG
About author:
XI Zhiyuan, born in 1995, M. S. candidate. His research interests include machine learning, computer vision.Supported by:
摘要:
驾驶员危险驾驶行为是恶性交通事故发生的主要原因之一,因此识别驾驶员行为具有工程应用上的重要意义。目前,主流基于视觉的检测方法是对驾驶员行为的局部时空特征进行研究,针对全局空间特征及长时序相关性特征研究较少,这在一定程度上无法结合场景上下文信息对危险驾驶行为进行识别。为了解决上述问题,提出一种基于双路时空网络的驾驶员行为识别方法,整合不同时空通路的优点以提高行为特征丰富度。首先,使用一种改进的双流卷积神经网络(TSN)对时空信息进行表征学习,同时降低提取特征的稀疏性;其次,构建一种基于Transformer的串行时空网络补充长时序相关性信息;最后,联合双路时空网络进行融合决策,增强模型的鲁棒性。实验结果表明,所提方法在驾驶员疲劳检测数据集YawDD、驾驶员分心检测数据集SF-DDDD和最新驾驶员行为识别数据集SynDD1这3个公开数据集上分别取得99.85%、99.94%和98.77%的识别准确率,特别是在SynDD1上,与使用动作识别的网络MoviNet-A0相比识别准确率提升了1.64个百分点;消融实验结果也验证了该方法对驾驶员行为有较高的识别精度。
中图分类号:
席治远, 唐超, 童安炀, 王文剑. 基于双路时空网络的驾驶员行为识别[J]. 计算机应用, 2024, 44(5): 1511-1519.
Zhiyuan XI, Chao TANG, Anyang TONG, Wenjian WANG. Driver behavior recognition based on dual-path spatiotemporal network[J]. Journal of Computer Applications, 2024, 44(5): 1511-1519.
真实情况 | 预测情况 | |
---|---|---|
P | N | |
P | TP | FN |
N | FP | TN |
表1 混淆矩阵
Tab. 1 Confusion matrix
真实情况 | 预测情况 | |
---|---|---|
P | N | |
P | TP | FN |
N | FP | TN |
环境 | 参数 | 环境 | 参数 |
---|---|---|---|
操作系统 | Windows10 | PyTorch | 1.8.1 |
显卡 | RTX3060 | CUDA | 11.3.1 |
Python | 3.9 |
表2 实验环境
Tab. 2 Experimental environment
环境 | 参数 | 环境 | 参数 |
---|---|---|---|
操作系统 | Windows10 | PyTorch | 1.8.1 |
显卡 | RTX3060 | CUDA | 11.3.1 |
Python | 3.9 |
方法 | YawDD | SF-DDDD | SynDD1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | P | R | F1 | Acc | P | R | F1 | Acc | P | R | F1 | |
CNNtemporal | 95.50 | 95.47 | 95.47 | 95.47 | 84.89 | 84.83 | 84.83 | 84.83 | 86.20 | 86.21 | 86.21 | 86.21 |
CNNspatio | 99.64 | 99.65 | 99.65 | 99.65 | 99.51 | 99.51 | 99.50 | 99.50 | 97.20 | 97.21 | 97.18 | 97.20 |
TSN(a) | 99.63 | 99.65 | 99.64 | 99.64 | 98.72 | 98.68 | 98.70 | 98.69 | 97.17 | 97.18 | 97.17 | 97.17 |
TSN(b) | 99.70 | 99.68 | 99.71 | 99.70 | 99.46 | 99.44 | 99.41 | 99.42 | 97.22 | 97.23 | 97.23 | 97.23 |
TSN(b)-PCA | 99.56 | 99.60 | 99.56 | 99.58 | 99.33 | 99.34 | 99.37 | 99.35 | 97.25 | 97.23 | 97.24 | 97.24 |
TSN(b)-KPCA | 99.72 | 99.71 | 99.73 | 99.72 | 99.55 | 99.57 | 99.56 | 99.56 | 98.43 | 98.41 | 98.40 | 98.40 |
DPST(a) | 99.81 | 99.80 | 99.80 | 99.80 | 99.71 | 99.72 | 99.73 | 99.72 | 98.51 | 98.49 | 98.50 | 98.49 |
DPST(b) | 99.85 | 99.83 | 99.85 | 99.84 | 99.94 | 99.94 | 99.95 | 99.95 | 98.77 | 98.77 | 98.77 | 98.77 |
表3 本文方法的消融实验结果 (%)
Tab. 3 Ablation experiment results of proposed method
方法 | YawDD | SF-DDDD | SynDD1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | P | R | F1 | Acc | P | R | F1 | Acc | P | R | F1 | |
CNNtemporal | 95.50 | 95.47 | 95.47 | 95.47 | 84.89 | 84.83 | 84.83 | 84.83 | 86.20 | 86.21 | 86.21 | 86.21 |
CNNspatio | 99.64 | 99.65 | 99.65 | 99.65 | 99.51 | 99.51 | 99.50 | 99.50 | 97.20 | 97.21 | 97.18 | 97.20 |
TSN(a) | 99.63 | 99.65 | 99.64 | 99.64 | 98.72 | 98.68 | 98.70 | 98.69 | 97.17 | 97.18 | 97.17 | 97.17 |
TSN(b) | 99.70 | 99.68 | 99.71 | 99.70 | 99.46 | 99.44 | 99.41 | 99.42 | 97.22 | 97.23 | 97.23 | 97.23 |
TSN(b)-PCA | 99.56 | 99.60 | 99.56 | 99.58 | 99.33 | 99.34 | 99.37 | 99.35 | 97.25 | 97.23 | 97.24 | 97.24 |
TSN(b)-KPCA | 99.72 | 99.71 | 99.73 | 99.72 | 99.55 | 99.57 | 99.56 | 99.56 | 98.43 | 98.41 | 98.40 | 98.40 |
DPST(a) | 99.81 | 99.80 | 99.80 | 99.80 | 99.71 | 99.72 | 99.73 | 99.72 | 98.51 | 98.49 | 98.50 | 98.49 |
DPST(b) | 99.85 | 99.83 | 99.85 | 99.84 | 99.94 | 99.94 | 99.95 | 99.95 | 98.77 | 98.77 | 98.77 | 98.77 |
方法 | YawDD | SF-DDDD | SynDD1 | 方法 | YawDD | SF-DDDD | SynDD1 |
---|---|---|---|---|---|---|---|
LSTM[ | 88.60 | — | — | PCA+CNN[ | — | 97.31 | — |
EAR+CNN[ | 91.00 | 97.50 | — | AlexNet[ | — | 99.49 | — |
多特征融合SVM[ | 94.32 | — | — | VGG16[ | — | 99.57 | — |
CNN+Bi-LSTM[ | 96.48 | — | — | MoviNet-A0[ | — | — | 97.13 |
改进CNN[ | 99.35 | — | — | 本文方法 | 99.85 | 99.94 | 98.77 |
表4 不同方法在三个实验数据集上的精度对比 ( %)
Tab. 4 Comparison of accuracy of different methods on three experimental datasets
方法 | YawDD | SF-DDDD | SynDD1 | 方法 | YawDD | SF-DDDD | SynDD1 |
---|---|---|---|---|---|---|---|
LSTM[ | 88.60 | — | — | PCA+CNN[ | — | 97.31 | — |
EAR+CNN[ | 91.00 | 97.50 | — | AlexNet[ | — | 99.49 | — |
多特征融合SVM[ | 94.32 | — | — | VGG16[ | — | 99.57 | — |
CNN+Bi-LSTM[ | 96.48 | — | — | MoviNet-A0[ | — | — | 97.13 |
改进CNN[ | 99.35 | — | — | 本文方法 | 99.85 | 99.94 | 98.77 |
1 | OLSON R L, HANOWKI R J, HICKMAN J S, et al. Driver distraction in commercial vehicle operations: FMCSA-RRT-09-042[R]. Washington, DC: United States Department of Transportation, 2009-09-01. |
2 | LIU F, LI X, LV T, et al. A review of driver fatigue detection: progress and prospect[C]// Proceedings of the 2019 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2019: 1-6. 10.1109/icce.2019.8662098 |
3 | SIKANDER G, ANWAR S. Driver fatigue detection systems: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2339-2352. 10.1109/tits.2018.2868499 |
4 | KALAYCI T E, KALAYCI E G, LECHNER G, et al. Triangulated investigation of trust in automated driving: challenges and solution approaches for data integration[J]. Journal of Industrial Information Integration, 2021, 21: 100186. 10.1016/j.jii.2020.100186 |
5 | ABTAHI S, OMIDYEGANEH M, SHIRMOHAMMADI S, et al. YawDD: a yawning detection dataset[C]// Proceedings of the 5th ACM Multimedia Systems Conference. New York: ACM, 2014: 24-28. 10.1145/2557642.2563678 |
6 | RAHMAN M S, VENKATACHALAPATHY A, SHARMA A, et al. Synthetic distracted driving (SynDD1) dataset for analyzing distracted behaviors and various gaze zones of a driver[J]. Data in Brief, 2022, 46: 108793. 10.1016/j.dib.2022.108793 |
7 | KASHEVNIK A, SHCHEDRIN R, KAISER C, et al. Driver distraction detection methods: a literature review and framework[J]. IEEE Access, 2021, 9: 60063-60076. 10.1109/access.2021.3073599 |
8 | WANG J, CHAI W, VENKATACHALAPATHY A, et al. A survey on driver behavior analysis from in-vehicle cameras[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10186-10209. 10.1109/tits.2021.3126231 |
9 | MURPHY-CHUTORIAN E, TRIVEDI M M. Head pose estimation and augmented reality tracking: an integrated system and evaluation for monitoring driver awareness[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 300-311. 10.1109/tits.2010.2044241 |
10 | ZHANG W, ZHANG H. Research on distracted driving identification of truck drivers based on simulated driving experiment[J]. IOP Conference Series: Earth and Environmental Science, 2021, 638: 012039. 10.1088/1755-1315/638/1/012039 |
11 | OHN-BAR E, MARTIN S, TAWARI A, et al. Head, eye, and hand patterns for driver activity recognition[C]// Proceedings of the 2014 22nd International Conference on Pattern Recognition. Piscataway: IEEE, 2014: 660-665. 10.1109/icpr.2014.124 |
12 | ZHANG L, TAN B, LIU T, et al. Research on recognition of dangerous driving behavior based on support vector machine[C/OL]// Proceedings of the Twelfth International Conference on Graphics and Image Processing. Bellingham: SPIE, 2021, 11720[2023-05-01]. . |
13 | BRAUNAGEL C, KASNECI E, STOLZMANN W, et al. Driver-activity recognition in the context of conditionally autonomous driving[C]// Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2015: 1652-1657. 10.1109/itsc.2015.268 |
14 | HOU Z, OU S, XU D. Research on fatigue driving feature detection algorithms of drivers based on machine learning[J]. Systems Science & Control Engineering, 2021, 9(1): 167-172. 10.1080/21642583.2021.1888819 |
15 | OKON O D, MENG L. Detecting distracted driving with deep learning[C]// Proceedings of the 2017 International Conference on Interactive Collaborative Robotics. Cham: Springer, 2017: 170-179. 10.1007/978-3-319-66471-2_19 |
16 | KOESDWIADY A, BEDAWI S M, OU C, et al. End-to-end deep learning for driver distraction recognition[C]// Proceedings of the 2017 International Conference on Image Analysis and Recognition. Cham: Springer, 2017: 11-18. 10.1007/978-3-319-59876-5_2 |
17 | JAIN A, KOPPULA H S, SOH S, et al. Brain4Cars: car that knows before you do via sensory-fusion deep learning architecture[EB/OL]. [2022-12-26]. . 10.1109/iccv.2015.364 |
18 | TONG A, TANG C, WANG W. Semi-supervised action recognition from temporal augmentation using curriculum learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023,33(3): 1305-1319. 10.1109/tcsvt.2022.3210271 |
19 | REN F, TANG C, TONG A, et al. Skeleton-based human action recognition by fusing attention based three-stream convolutional neural network and SVM[J]. Multimedia Tools and Applications, 2024, 83: 6273-6295. 10.1007/s11042-023-15334-9 |
20 | FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion[C]// Proceedings of the 13th Scandinavian Conference on Image Analysis. Berlin: Springer, 2003: 363-370. 10.1007/3-540-45103-x_50 |
21 | TAMURA M, VISHWAKARMA R, VENNELAKANTI R. Hunting group clues with Transformers for social group activity recognition [C]// Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 19-35. 10.1007/978-3-031-19772-7_2 |
22 | SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 568-576. 10.1002/14651858.CD001941.pub3 |
23 | SCHOLKOPF B, SMOLA A, MULLER K R. Kernel principal component analysis [C]// Proceedings of the 1997 International Conference on Artificial Neural Networks. Berlin: Springer, 1997: 583-588. 10.1007/bfb0020217 |
24 | YANG J, YANG J-Y, ZHANG D, et al. Feature fusion: parallel strategy vs. serial strategy[J]. Pattern Recognition, 2003, 36(6): 1369-1381. 10.1016/s0031-3203(02)00262-5 |
25 | HAN M, ZHANG D J, WANG Y, et al. Dual-AI: dual-path actor interaction learning for group activity recognition[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2980-2989. 10.1109/cvpr52688.2022.00300 |
26 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
27 | ZHANG W, SU J. Driver yawning detection based on long short term memory networks[C]// Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2017: 1-5. 10.1109/ssci.2017.8285343 |
28 | DONG B-T, LIN H-Y. An on-board monitoring system for driving fatigue and distraction detection[C]// Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology. Piscataway: IEEE, 2021: 850-855. 10.1109/icit46573.2021.9453676 |
29 | YOU F, GONG Y, TU H, et al. A fatigue driving detection algorithm based on facial motion information entropy[J]. Journal of Advanced Transportation, 2020, 2020: 8851485. 10.1155/2020/8851485 |
30 | SAURAV S, MATHUR S, SANG I, et al. Yawn detection for driver’s drowsiness prediction using bi-directional LSTM with CNN features [C]// Proceedings of the 11th Intelligent Human Computer Interaction. Cham: Springer, 2020: 189-200. 10.1007/978-3-030-44689-5_17 |
31 | SAVAŞ B K, BECERIKLI Y. A deep learning approach to driver fatigue detection via mouth state analyses and yawning detection[J]. IOSR Journal of Computer Engineering, 2021, 23(3): 24-30. |
32 | RAO X, LIN F, CHEN Z, et al. Distracted driving recognition method based on deep convolutional neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 193-200. 10.1007/s12652-019-01597-4 |
33 | UNADKAT V, SAYANI P, KAPADIA H, et al. Automated system for detecting distracted driver[C]// Proceedings of the 2018 4th International Conference on Computing Communication and Automation. Piscataway: IEEE, 2018: 1-4. 10.1109/ccaa.2018.8777709 |
34 | MASOOD S, RAI A, AGGARWAL A, et al. Detecting distraction of drivers using convolutional neural network[J]. Pattern Recognition Letters, 2020, 139: 79-85. 10.1016/j.patrec.2017.12.023 |
35 | H-Q NGUYEN, T-B NGUYEN, TRAN T K, et al. End-to-end deep learning-based framework for driver action recognition[C]// Proceedings of the 2022 International Conference on Multimedia Analysis and Pattern Recognition. Piscataway: IEEE, 2022: 1-6. 10.1109/mapr56351.2022.9924944 |
[1] | 方介泼, 陶重犇. 应对零日攻击的混合车联网入侵检测系统[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2763-2769. |
[2] | 李金金, 桑国明, 张益嘉. APK-CNN和Transformer增强的多域虚假新闻检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2674-2682. |
[3] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[4] | 杨鑫, 陈雪妮, 吴春江, 周世杰. 结合变种残差模型和Transformer的城市公路短时交通流预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2947-2951. |
[5] | 任烈弘, 黄铝文, 田旭, 段飞. 基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2739-2746. |
[6] | 贾洁茹, 杨建超, 张硕蕊, 闫涛, 陈斌. 基于自蒸馏视觉Transformer的无监督行人重识别[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2893-2902. |
[7] | 丁宇伟, 石洪波, 李杰, 梁敏. 基于局部和全局特征解耦的图像去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2571-2579. |
[8] | 邓凯丽, 魏伟波, 潘振宽. 改进掩码自编码器的工业缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2595-2603. |
[9] | 杨帆, 邹窈, 朱明志, 马振伟, 程大伟, 蒋昌俊. 基于图注意力Transformer神经网络的信用卡欺诈检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2634-2642. |
[10] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[11] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[12] | 黎施彬, 龚俊, 汤圣君. 基于Graph Transformer的半监督异配图表示学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1816-1823. |
[13] | 吕锡婷, 赵敬华, 荣海迎, 赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1760-1766. |
[14] | 刘子涵, 周登文, 刘玉铠. 基于全局依赖Transformer的图像超分辨率网络[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1588-1596. |
[15] | 孙子文, 钱立志, 杨传栋, 高一博, 陆庆阳, 袁广林. 基于Transformer的视觉目标跟踪方法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1644-1654. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||